論文の概要: SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion
- arxiv url: http://arxiv.org/abs/2203.15480v1
- Date: Tue, 29 Mar 2022 12:27:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 15:03:44.867404
- Title: SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion
- Title(参考訳): SAR-ShipNet:双方向コーディネートアテンションとマルチ解像度特徴融合によるSAR-Ship検出ニューラルネットワーク
- Authors: Yuwen Deng, Donghai Guan, Yanyu Chen, Weiwei Yuan, Jiemin Ji,
Mingqiang Wei
- Abstract要約: 本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
- 参考スコア(独自算出の注目度): 7.323279438948967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a practically meaningful ship detection problem from
synthetic aperture radar (SAR) images by the neural network. We broadly extract
different types of SAR image features and raise the intriguing question that
whether these extracted features are beneficial to (1) suppress data variations
(e.g., complex land-sea backgrounds, scattered noise) of real-world SAR images,
and (2) enhance the features of ships that are small objects and have different
aspect (length-width) ratios, therefore resulting in the improvement of ship
detection. To answer this question, we propose a SAR-ship detection neural
network (call SAR-ShipNet for short), by newly developing Bidirectional
Coordinate Attention (BCA) and Multi-resolution Feature Fusion (MRF) based on
CenterNet. Moreover, considering the varying length-width ratio of arbitrary
ships, we adopt elliptical Gaussian probability distribution in CenterNet to
improve the performance of base detector models. Experimental results on the
public SAR-Ship dataset show that our SAR-ShipNet achieves competitive
advantages in both speed and accuracy.
- Abstract(参考訳): 本稿では,ニューラルネットワークによる合成開口レーダ(sar)画像からの船舶検出問題について検討する。
我々は,SAR画像の特徴を多種多様に抽出し,(1)実世界のSAR画像のデータの変動(複雑なランドシー背景,散乱ノイズなど)を抑えること,(2)小型物体である船舶の特性を向上すること,そして(幅)異なるアスペクトを持つ船舶の特性を向上させることにより,船体検出の改善をもたらすという興味深い疑問を提起する。
そこで本研究では,CenterNetに基づく双方向座標注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ship Detection Neural Network(略してSAR-ShipNet)を提案する。
さらに,任意の船舶の長さ幅比を考慮し,センタネットにおける楕円ガウス確率分布を採用し,ベース検出器モデルの性能を向上させる。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
関連論文リスト
- Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation [20.540873039361102]
本稿では,オブジェクト検出,スペックル抑制,ターゲットセグメンテーションタスクからなるSAR船舶検出のためのマルチタスク学習フレームワークを提案する。
アスペクト比重み付けによる角度分類損失を導入し、角度周期性と物体比に対処して検出精度を向上させる。
スペックル抑制タスクはデュアルフュージョンアテンション機構を使用してノイズを低減し、浅くノイズを生じさせる特徴を融合させ、ロバスト性を高める。
ターゲットセグメンテーションタスクは、回転したガウスマスクを利用して、乱雑な背景から対象領域を抽出するネットワークを支援し、画素レベルの予測により検出効率を向上させる。
論文 参考訳(メタデータ) (2024-11-21T05:10:41Z) - RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets [10.748210940033484]
RSNetは、SAR画像における船舶検出を強化する軽量フレームワークである。
Waveletpool-ContextGuided (WCG)は、グローバルなコンテキスト理解を導くバックボーンである。
ウェーブレットプール・スターフュージョン (WSF) は、残っているウェーブレット要素の乗算構造を用いてネックとして導入された。
論文 参考訳(メタデータ) (2024-10-30T14:46:35Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Dual-stream contrastive predictive network with joint handcrafted
feature view for SAR ship classification [9.251342335645765]
本稿では,新しいデュアルストリームコントラスト予測ネットワーク(DCPNet)を提案する。
最初のタスクは正のサンプルペアを構築し、コアエンコーダにより一般的な表現を学習させることである。
第2の課題は, 深部特徴と手話特徴との対応を適応的に把握し, モデル内での知識伝達を実現し, 特徴融合による冗長性を効果的に改善することである。
論文 参考訳(メタデータ) (2023-11-26T05:47:01Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - SaNet: Scale-aware neural Network for Parsing Multiple Spatial
Resolution Aerial Images [0.0]
複数空間分解能空中画像解析のためのスケールアウェアニューラルネットワーク (SaNet) を提案する。
スケール変動による大小のオブジェクト間の不均衡なセグメンテーション品質に対処するため、SaNetは密に接続されたフィーチャーネットワーク(DCFPN)モジュールを展開します。
情報的特徴損失を軽減するため、SFRモジュールをネットワークに組み込み、空間的関係強化を伴うスケール不変の特徴を学習する。
論文 参考訳(メタデータ) (2021-03-14T14:19:46Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z) - Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing
Imagery Based on Multi-Scale Convolutional Network [7.984128966509492]
マルチスケール畳み込みニューラルネットワーク(CNN)に基づく局所性認識型回転船検出(LARSD)フレームワークを提案する。
提案フレームワークはUNetのようなマルチスケールCNNを用いて高解像度の情報を持つマルチスケール特徴マップを生成する。
検出データセットを拡大するために、新しい高解像度船舶検出(HRSD)データセットを構築し、2499の画像と9269のインスタンスを異なる解像度でGoogle Earthから収集した。
論文 参考訳(メタデータ) (2020-07-24T03:01:42Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。