論文の概要: Software Architecture for ML-based Systems: What Exists and What Lies
Ahead
- arxiv url: http://arxiv.org/abs/2103.07950v2
- Date: Tue, 16 Mar 2021 07:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 11:53:02.108327
- Title: Software Architecture for ML-based Systems: What Exists and What Lies
Ahead
- Title(参考訳): MLベースのシステムのためのソフトウェアアーキテクチャ - 既存のものと、その先にあるもの
- Authors: Henry Muccini and Karthik Vaidhyanathan
- Abstract要約: 私たちは、MLベースのソフトウェアシステムを設計する現在のシナリオに存在するさまざまなアーキテクチャプラクティスを強調することを目的として、スペクトルの以前の側面に焦点を当てています。
MLベースのソフトウェアシステムを設計するための標準的なプラクティスセットをより適切に定義するために、MLとソフトウェア実践者の双方の注意を必要とするソフトウェアアーキテクチャの4つの重要な領域を特定します。
- 参考スコア(独自算出の注目度): 4.073826298938432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing usage of machine learning (ML) coupled with the software
architectural challenges of the modern era has resulted in two broad research
areas: i) software architecture for ML-based systems, which focuses on
developing architectural techniques for better developing ML-based software
systems, and ii) ML for software architectures, which focuses on developing ML
techniques to better architect traditional software systems. In this work, we
focus on the former side of the spectrum with a goal to highlight the different
architecting practices that exist in the current scenario for architecting
ML-based software systems. We identify four key areas of software architecture
that need the attention of both the ML and software practitioners to better
define a standard set of practices for architecting ML-based software systems.
We base these areas in light of our experience in architecting an ML-based
software system for solving queuing challenges in one of the largest museums in
Italy.
- Abstract(参考訳): 機械学習(ML)の利用の増加と、現代のソフトウェアアーキテクチャの課題が組み合わさって、MLベースのシステムのためのソフトウェアアーキテクチャ、MLベースのソフトウェアシステムを開発するためのアーキテクチャ技術開発に焦点を当てたソフトウェアアーキテクチャのためのソフトウェアアーキテクチャ、そして、従来のソフトウェアシステムを構築するためのML技術の開発に焦点を当てたソフトウェアアーキテクチャのためのMLの2つの広い研究領域が生まれた。
本研究では、MLベースのソフトウェアシステムを設計する現在のシナリオに存在するさまざまなアーキテクチャプラクティスを強調することを目的として、スペクトルの以前の側面に焦点を当てる。
MLベースのソフトウェアシステムを設計するための標準的なプラクティスセットをより適切に定義するために、MLとソフトウェア実践者の双方の注意を必要とするソフトウェアアーキテクチャの4つの重要な領域を特定します。
これらの領域は、イタリア最大の博物館のひとつでキュー処理の課題を解決するために、MLベースのソフトウェアシステムを設計した経験を踏まえたものです。
関連論文リスト
- A Large-Scale Study of Model Integration in ML-Enabled Software Systems [4.776073133338119]
機械学習(ML)とそのシステムへの組み込みは、ソフトウェア集約システムのエンジニアリングを大きく変えた。
伝統的に、ソフトウェアエンジニアリングは、ソースコードやそれらを作成するプロセスなど、手作業で作成したアーティファクトに焦点を当てている。
我々は、GitHub上で2,928以上のオープンソースシステムをカバーする、実際のML対応ソフトウェアシステムに関する最初の大規模な研究を提示する。
論文 参考訳(メタデータ) (2024-08-12T15:28:40Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
データサイエンスと機械学習に関連する関心事、例えばデータサイエンティストやデータエンジニアの利害関係者は、まだ既存のアーキテクチャフレームワークには含まれていない。
10か国25以上の組織から61名の被験者を対象に調査を行った。
論文 参考訳(メタデータ) (2023-08-09T21:54:34Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat [5.839906946900443]
我々は,モノのインターネット(IoT)分野に着目した機械学習対応ソフトウェアシステムの開発に,MDEパラダイムを採用することを提案する。
ケーススタディで実証されたように、最先端のオープンソースモデリングツールであるMontiAnnaとML-Quadratが、この目的のためにどのように使用できるかを説明します。
論文 参考訳(メタデータ) (2022-09-15T13:21:16Z) - Achieving Guidance in Applied Machine Learning through Software
Engineering Techniques [0.0]
現在開発環境とML APIを使用しており、MLアプリケーションの開発者に提供しています。
現在のMLツールは、いくつかの基本的なソフトウェアエンジニアリングのゴールドスタンダードを満たすには足りません。
この結果から,ML固有のソフトウェア工学の研究に十分な機会があることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T12:54:57Z) - A Survey of Machine Learning for Computer Architecture and Systems [18.620218353713476]
コンピュータアーキテクチャとシステムが機械学習(ml)アルゴリズムやモデルの効率的な実行を可能にするように最適化されるのは、長い間のことです。
今こそ、MLとシステムの関係を再考し、MLがコンピュータアーキテクチャとシステムが設計される方法を変える時です。
論文 参考訳(メタデータ) (2021-02-16T04:09:57Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A Reference Software Architecture for Social Robots [64.86618385090416]
我々は社会ロボットが恩恵を受けるかもしれない一連の原則を提案する。
これらの原則は、社会ロボットのためのリファレンスソフトウェアアーキテクチャの設計の基礎にもなっている。
論文 参考訳(メタデータ) (2020-07-09T17:03:21Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。