論文の概要: Achieving Guidance in Applied Machine Learning through Software
Engineering Techniques
- arxiv url: http://arxiv.org/abs/2203.15510v1
- Date: Tue, 29 Mar 2022 12:54:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 21:58:20.096189
- Title: Achieving Guidance in Applied Machine Learning through Software
Engineering Techniques
- Title(参考訳): ソフトウェア工学技術による応用機械学習における指導の達成
- Authors: Lars Reimann, G\"unter Kniesel-W\"unsche
- Abstract要約: 現在開発環境とML APIを使用しており、MLアプリケーションの開発者に提供しています。
現在のMLツールは、いくつかの基本的なソフトウェアエンジニアリングのゴールドスタンダードを満たすには足りません。
この結果から,ML固有のソフトウェア工学の研究に十分な機会があることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Development of machine learning (ML) applications is hard. Producing
successful applications requires, among others, being deeply familiar with a
variety of complex and quickly evolving application programming interfaces
(APIs). It is therefore critical to understand what prevents developers from
learning these APIs, using them properly at development time, and understanding
what went wrong when it comes to debugging. We look at the (lack of) guidance
that currently used development environments and ML APIs provide to developers
of ML applications, contrast these with software engineering best practices,
and identify gaps in the current state of the art. We show that current ML
tools fall short of fulfilling some basic software engineering gold standards
and point out ways in which software engineering concepts, tools and techniques
need to be extended and adapted to match the special needs of ML application
development. Our findings point out ample opportunities for research on
ML-specific software engineering.
- Abstract(参考訳): 機械学習(ML)アプリケーションの開発は難しい。
成功したアプリケーションを作るには、様々な複雑で迅速に進化するアプリケーションプログラミングインターフェース(api)に精通する必要がある。
したがって、開発者がこれらのapiを学べない理由を理解し、開発時に適切に使用し、デバッグに関して何がうまくいかなかったのかを理解することが重要です。
私たちは、現在開発環境とML APIを使っている(多くの)ガイダンスを、MLアプリケーションの開発者に提供し、これらをソフトウェアエンジニアリングのベストプラクティスと対比し、最先端技術におけるギャップを特定します。
現在のMLツールは、いくつかの基本的なソフトウェアエンジニアリング標準を満たすには足りず、ソフトウェアエンジニアリングの概念、ツール、テクニックをMLアプリケーション開発の特別なニーズに合わせて拡張し、適応させる必要がある方法を指摘する。
この結果から,ML固有のソフトウェア工学の研究に十分な機会があることが示唆された。
関連論文リスト
- Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
デジタル双生児は、コスト効率の良いソフトウェア開発とメンテナンス戦略の可能性を秘めている。
私たちは中小企業に現在の開発プロセスについてインタビューした。
最初の結果は、リアルタイムの要求が、これまでは、Software-in-the-Loop開発アプローチを妨げていることを示している。
論文 参考訳(メタデータ) (2023-09-17T08:56:36Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
本稿では,Semantic Low-Code Engineering for ML Applications (SeLoC-ML) というフレームワークを提案する。
SeLoC-MLは、非専門家が大規模なMLモデルやデバイスをモデル化し、発見し、再利用することを可能にする。
開発者は、レシピと呼ばれるセマンティックなアプリケーションテンプレートから、エンドユーザアプリケーションのプロトタイプを高速に作成できる。
論文 参考訳(メタデータ) (2022-07-18T13:06:21Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Machine Learning Application Development: Practitioners' Insights [18.114724750441724]
MLアプリケーション開発の課題とベストプラクティスを理解することを目的とした調査について報告する。
80人の実践者から得られた結果を17の発見にまとめ、MLアプリケーション開発の課題とベストプラクティスを概説する。
報告された課題が、MLベースのアプリケーションのエンジニアリングプロセスと品質を改善するために調査すべきトピックについて、研究コミュニティに知らせてくれることを期待しています。
論文 参考訳(メタデータ) (2021-12-31T03:38:37Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Machine Learning Model Development from a Software Engineering
Perspective: A Systematic Literature Review [0.0]
データサイエンティストは、しばしば、業界やアカデミーの様々な問題を解決するために機械学習モデルを開発した。
本稿では,ソフトウェア工学の観点からMLモデルの開発において生じる課題と実践について考察する。
論文 参考訳(メタデータ) (2021-02-15T14:25:13Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。