論文の概要: Trust Your IMU: Consequences of Ignoring the IMU Drift
- arxiv url: http://arxiv.org/abs/2103.08286v2
- Date: Tue, 16 Mar 2021 20:25:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-18 09:24:08.774114
- Title: Trust Your IMU: Consequences of Ignoring the IMU Drift
- Title(参考訳): IMUを信頼する: IMUドリフトを無視する理由
- Authors: Marcus Valtonen \"Ornhag and Patrik Persson and M{\aa}rten Wadenb\"ack
and Kalle {\AA}str\"om and Anders Heyden
- Abstract要約: 本研究では,未知の焦点長と半径歪みプロファイルを持つ相対ポーズ問題を共同で解くための最初の解法を開発した。
部分校正されたセットアップでは,精度が小さく,あるいは無視できるような,最先端のアルゴリズムに比べて大幅なスピードアップを示す。
市販の異なる低コストのUAV上で提案されたソルバーを評価し、IMUドリフトに関する新しい仮定が実用アプリケーションで実現可能であることを実証する。
- 参考スコア(独自算出の注目度): 2.253916533377465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we argue that modern pre-integration methods for inertial
measurement units (IMUs) are accurate enough to ignore the drift for short time
intervals. This allows us to consider a simplified camera model, which in turn
admits further intrinsic calibration. We develop the first-ever solver to
jointly solve the relative pose problem with unknown and equal focal length and
radial distortion profile while utilizing the IMU data. Furthermore, we show
significant speed-up compared to state-of-the-art algorithms, with small or
negligible loss in accuracy for partially calibrated setups. The proposed
algorithms are tested on both synthetic and real data, where the latter is
focused on navigation using unmanned aerial vehicles (UAVs). We evaluate the
proposed solvers on different commercially available low-cost UAVs, and
demonstrate that the novel assumption on IMU drift is feasible in real-life
applications. The extended intrinsic auto-calibration enables us to use
distorted input images, making tedious calibration processes obsolete, compared
to current state-of-the-art methods.
- Abstract(参考訳): 本稿では,慣性測定単位(imus)の現代的な事前積分法は,短時間のドリフトを無視できるほど正確であると主張する。
これにより、単純化されたカメラモデルを考えることができ、それによってさらに固有のキャリブレーションが可能となる。
我々は、IMUデータを利用して、未知かつ等距離の焦点長と半径歪みプロファイルの相対ポーズ問題を共同で解くための最初の解法を開発した。
さらに, 一部校正装置の精度を低下させることなく, 最先端のアルゴリズムと比較して, 大幅な高速化を示す。
提案するアルゴリズムは合成データと実データの両方でテストされ、後者は無人航空機(uavs)によるナビゲーションに焦点を当てている。
そこで本研究では, 市販の低コストuavを用いて提案する解法を評価し, imuドリフトの新たな仮定が実生活で実現可能であることを示す。
拡張された内在的自己校正により、歪んだ入力画像の使用が可能となり、現在の最先端の方法に比べて退屈な校正プロセスが時代遅れになる。
関連論文リスト
- DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - AirIMU: Learning Uncertainty Propagation for Inertial Odometry [29.093168179953185]
ストラップダウン慣性測定装置(IMU)を用いた慣性計測(IO)は多くのロボット応用において重要である。
データ駆動手法により不確実性、特に非決定論的誤差を推定するハイブリッド手法であるAirIMUを提案する。
ハンドヘルドデバイス,車両,および262kmの軌道をカバーするヘリコプターなど,さまざまなプラットフォーム上での有効性を実証する。
論文 参考訳(メタデータ) (2023-10-07T17:08:22Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Multi-Visual-Inertial System: Analysis, Calibration and Estimation [26.658649118048032]
マルチビジュアル・慣性システム(MVIS)の状態を推定し,センサ融合アルゴリズムを開発した。
我々は、関連する視覚慣性センサーの完全な校正に興味を持っている。
論文 参考訳(メタデータ) (2023-08-10T02:47:36Z) - Read Pointer Meters in complex environments based on a Human-like
Alignment and Recognition Algorithm [16.823681016882315]
これらの問題を克服するための人間ライクなアライメントと認識アルゴリズムを提案する。
STM(Spatial Transformed Module)は,画像のフロントビューを自己自律的に取得するために提案される。
VAM(Value Acquisition Module)は、エンドツーエンドのトレーニングフレームワークによって正確なメーター値を推測するために提案される。
論文 参考訳(メタデータ) (2023-02-28T05:37:04Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
教師なし単眼深度と自我運動推定は近年広く研究されている。
我々は、視覚情報とIMUモーションダイナミクスを統合した新しいスケールアウェアフレームワークDynaDepthを提案する。
我々は、KITTIおよびMake3Dデータセット上で広範囲な実験とシミュレーションを行うことにより、DynaDepthの有効性を検証する。
論文 参考訳(メタデータ) (2022-07-11T07:50:22Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Efficient Real-Time Radial Distortion Correction for UAVs [1.7149364927872015]
慣性測定ユニット(IMU)を備えた無人航空機(UAV)の車載半径歪み補正のための新しいアルゴリズムを提案する。
このアプローチは校正手順を冗長にし、即時光の交換を可能にする。
焦点長, 半径歪み分布, 運動パラメータをホモグラフから同時に推定する高速で頑健な最小解法を提案する。
論文 参考訳(メタデータ) (2020-10-08T18:34:56Z) - Minimal Solvers for Indoor UAV Positioning [1.7149364927872015]
本稿では,視覚的室内UAVナビゲーションへの応用において自然に発生する相対的なポーズ問題について考察する。
分解器は、室内のさまざまな現実的なシナリオのために、部分的にキャリブレーションされたカメラ用に設計されている。
提案した解法は, 数値安定性が向上し, より高速で, より少ない点対応が要求される。
論文 参考訳(メタデータ) (2020-03-16T11:07:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。