論文の概要: TinyOL: TinyML with Online-Learning on Microcontrollers
- arxiv url: http://arxiv.org/abs/2103.08295v1
- Date: Mon, 15 Mar 2021 11:39:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 13:44:19.215021
- Title: TinyOL: TinyML with Online-Learning on Microcontrollers
- Title(参考訳): TinyOL: マイクロコントローラ上でオンライン学習するTinyML
- Authors: Haoyu Ren, Darko Anicic and Thomas Runkler
- Abstract要約: TinyML(Tiny Machine Learning)は、汎用マイクロコントローラ(MCU)のディープラーニングの民主化に取り組んでいます。
現在のTinyMLソリューションはバッチ/オフライン設定に基づいており、MCU上のニューラルネットワークの推論のみをサポートする。
本稿では、ストリーミングデータ上でインクリメンタルなオンデバイストレーニングを可能にするtinyml(tinyml with online-learning)という新しいシステムを提案する。
- 参考スコア(独自算出の注目度): 7.172671995820974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tiny machine learning (TinyML) is a fast-growing research area committed to
democratizing deep learning for all-pervasive microcontrollers (MCUs).
Challenged by the constraints on power, memory, and computation, TinyML has
achieved significant advancement in the last few years. However, the current
TinyML solutions are based on batch/offline settings and support only the
neural network's inference on MCUs. The neural network is first trained using a
large amount of pre-collected data on a powerful machine and then flashed to
MCUs. This results in a static model, hard to adapt to new data, and impossible
to adjust for different scenarios, which impedes the flexibility of the
Internet of Things (IoT). To address these problems, we propose a novel system
called TinyOL (TinyML with Online-Learning), which enables incremental
on-device training on streaming data. TinyOL is based on the concept of online
learning and is suitable for constrained IoT devices. We experiment TinyOL
under supervised and unsupervised setups using an autoencoder neural network.
Finally, we report the performance of the proposed solution and show its
effectiveness and feasibility.
- Abstract(参考訳): Tiny Machine Learning(TinyML)は、全普及型マイクロコントローラ(MCU)のディープラーニングの民主化を目指す、急成長中の研究分野です。
TinyMLは電力、メモリ、計算の制約に悩まされ、ここ数年で大幅な進歩を遂げている。
しかし、現在のTinyMLソリューションはバッチ/オフライン設定に基づいており、MCUでのニューラルネットワークの推論のみをサポートする。
ニューラルネットワークは、まず、強力なマシン上の大量の事前コンパイルデータを使用してトレーニングされ、次にMCUにフラッシュされる。
これにより、静的モデル、新しいデータへの適応が難しく、さまざまなシナリオの調整が不可能になり、IoT(Internet of Things)の柔軟性を損なうことになる。
そこで本研究では,TinyOL(TinyML with Online-Learning)と呼ばれる,ストリーミングデータに関するデバイス上のトレーニングをインクリメンタルに行うシステムを提案する。
TinyOLはオンライン学習の概念に基づいており、制約付きIoTデバイスに適している。
オートエンコーダニューラルネットワークを用いて,TinyOLの監視下および非監視下セットアップ実験を行った。
最後に,提案手法の性能を報告し,その有効性と実現性を示す。
関連論文リスト
- TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment [47.39949471062935]
リソース制約のあるデバイス上でのトレーニングマシンとディープラーニングモデルは、小さな機械学習分野における次の課題である。
提案したアルゴリズムは、完全なネットワークと単一層実装を備え、科学界でパブリックリポジトリとして利用可能である。
論文 参考訳(メタデータ) (2024-11-25T14:44:26Z) - Training on the Fly: On-device Self-supervised Learning aboard Nano-drones within 20 mW [52.280742520586756]
ナノドローンのような小さな機械学習(TinyML)を利用した小型サイバー物理システム(CPS)は、ますます魅力的な技術になりつつある。
単純な電子回路はこれらのCPSを安価にすることができるが、計算、メモリ、センサーの資源を著しく制限する。
本稿では,ナノドロンの限られた超低消費電力資源にのみ依存する,オンデバイスファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-06T13:11:36Z) - TinySV: Speaker Verification in TinyML with On-device Learning [2.356162747014486]
本稿では,提案した TextitTiny Speaker Verification (TinySV) などのタスクで使用可能な,新しいタイプの適応型TinyMLソリューションを提案する。
提案したTinySVソリューションは、キーワードスポッティングと適応話者検証モジュールで構成される2層階層のTinyMLソリューションに依存している。
我々は,提案したTinySVソリューションの有効性と有効性を評価し,提案したソリューションを実世界のIoTデバイス上でテストした。
論文 参考訳(メタデータ) (2024-06-03T17:27:40Z) - Tiny Machine Learning: Progress and Futures [24.76599651516217]
Tiny Machine Learning (TinyML)は、機械学習の新しいフロンティアである。
TinyMLはハードウェアの制約のために難しい。
まず、TinyMLの定義、課題、応用について論じる。
論文 参考訳(メタデータ) (2024-03-28T00:34:56Z) - TinyMetaFed: Efficient Federated Meta-Learning for TinyML [8.940139322528829]
TinyMLに適したモデルに依存しないメタラーニングフレームワークであるTinyMetaFedを紹介する。
TinyMetaFedはニューラルネットワークの協調トレーニングを支援する。
部分的な局所的な再構築とトッププラスの選択的なコミュニケーションを通じて、コミュニケーションの節約とプライバシ保護を提供する。
論文 参考訳(メタデータ) (2023-07-13T15:39:26Z) - TinyReptile: TinyML with Federated Meta-Learning [9.618821589196624]
メタラーニングとオンラインラーニングにインスパイアされた,シンプルだが効率的なアルゴリズムであるTinyReptileを提案する。
Raspberry Pi 4とCortex-M4 MCUで256KBのRAMでTinyReptileをデモした。
論文 参考訳(メタデータ) (2023-04-11T13:11:10Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - A TinyML Platform for On-Device Continual Learning with Quantized Latent
Replays [66.62377866022221]
Latent Replay-based Continual Learning (CL)技術は、原則としてオンライン、サーバレスの適応を可能にする。
10コアのFP32対応並列超低消費電力プロセッサをベースとした,エンドツーエンドCLのためのHW/SWプラットフォームを提案する。
これらの手法を組み合わせることで,64MB未満のメモリを用いて連続学習を実現することができることを示す。
論文 参考訳(メタデータ) (2021-10-20T11:01:23Z) - MCUNet: Tiny Deep Learning on IoT Devices [62.752899523628066]
効率的なニューラルネットワーク(TinyNAS)と軽量推論エンジン(TinyEngine)を共同で設計するフレームワークを提案する。
TinyNASは、まず検索空間を最適化してリソース制約に適合させ、次に最適化された検索空間におけるネットワークアーキテクチャを専門化する、2段階のニューラルネットワーク検索アプローチを採用している。
TinyEngineは、階層的に最適化するのではなく、全体的なネットワークトポロジに従ってメモリスケジューリングを適応し、メモリ使用量を4.8倍削減する。
論文 参考訳(メタデータ) (2020-07-20T17:59:01Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。