論文の概要: Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
- arxiv url: http://arxiv.org/abs/2103.08323v1
- Date: Fri, 12 Mar 2021 16:07:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 03:22:28.892532
- Title: Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
- Title(参考訳): 都市交通インプテーション改善のための時空間テンソル補完
- Authors: Ahmed Ben Said, Abdelkarim Erradi
- Abstract要約: 都市交通データは、測定不足につながる不完全な傾向があります。
交通の都市的・時間的側面を考慮したCANDECOMP/AFAC(CP)完成手法を提案する。
提案手法は,最先端cpアプローチと比較して26%,最先端生成モデルベースアプローチでは35%の有効回復性能を提供する。
- 参考スコア(独自算出の注目度): 3.2489082010225494
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Effective management of urban traffic is important for any smart city
initiative. Therefore, the quality of the sensory traffic data is of paramount
importance. However, like any sensory data, urban traffic data are prone to
imperfections leading to missing measurements. In this paper, we focus on
inter-region traffic data completion. We model the inter-region traffic as a
spatiotemporal tensor that suffers from missing measurements. To recover the
missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach
that considers the urban and temporal aspects of the traffic. To derive the
urban characteristics, we divide the area of study into regions. Then, for each
region, we compute urban feature vectors inspired from biodiversity which are
used to compute the urban similarity matrix. To mine the temporal aspect, we
first conduct an entropy analysis to determine the most regular time-series.
Then, we conduct a joint Fourier and correlation analysis to compute its
periodicity and construct the temporal matrix. Both urban and temporal matrices
are fed into a modified CP-completion objective function. To solve this
objective, we propose an alternating least square approach that operates on the
vectorized version of the inputs. We conduct comprehensive comparative study
with two evaluation scenarios. In the first one, we simulate random missing
values. In the second scenario, we simulate missing values at a given area and
time duration. Our results demonstrate that our approach provides effective
recovering performance reaching 26% improvement compared to state-of-art CP
approaches and 35% compared to state-of-art generative model-based approaches.
- Abstract(参考訳): 都市交通の効果的な管理は、スマートシティイニシアチブにとって重要である。
したがって、感覚交通データの質は極めて重要である。
しかし、他のセンサデータと同様に、都市交通データは不完全であり、測定に欠けている。
本稿では,地域間トラフィックデータの補完に注目する。
本研究では,地域間トラフィックを時空間テンソルとしてモデル化する。
そこで本研究では,交通の都市的側面と時間的側面を考慮したCANDECOMP/PARAFAC(CP)補完手法を提案する。
都市特性を導出するために,研究領域を地域に分割する。
そして,各地域では,都市類似度行列の計算に使用される生物多様性から着想を得た都市特徴ベクトルを計算する。
時間的側面を掘り下げるために、まずエントロピー解析を行い、最も定期的な時系列を決定する。
そして,連成フーリエと相関解析を行い,その周期性を計算し,時間行列を構成する。
都市および時間行列は、修正CP補完目的関数に供給される。
この目的を達成するために,入力のベクトル化バージョンで動作する交互最小二乗法を提案する。
2つの評価シナリオで総合的な比較研究を行う。
まず、ランダムに欠落した値をシミュレートする。
第2のシナリオでは、特定の領域と時間における欠落値をシミュレートする。
提案手法は, 最先端CP手法に比べて26%, 最先端生成モデルを用いた手法に比べて35%, 有効回復性能が26%向上することを示した。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
最先端のモデルは、可能な限り最良の方法でデータを考えるのに苦労することが多い。
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Spatio-Temporal Contrastive Self-Supervised Learning for POI-level Crowd
Flow Inference [23.8192952068949]
S-temporal data(CSST)のための新しいコントラスト型自己学習フレームワークを提案する。
提案手法は,POI(Points of Interest)とその距離に基づく空間隣接グラフの構築から始める。
我々は、類似した事例から対象部分グラフの表現を予測するために、スワップした予測手法を採用する。
実世界の2つのデータセットで実施した実験では、広範囲のノイズデータに基づいて事前トレーニングされたCSSTが、ゼロからトレーニングされたモデルより一貫して優れていることを示した。
論文 参考訳(メタデータ) (2023-09-06T02:51:24Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
Fr'teche は双対性を意味し, 時間的バレシェセンタを定義するために提案した損失が有効であることを示す。
手書き文字と脳画像データによる実験は、我々の理論的発見を裏付けるものである。
論文 参考訳(メタデータ) (2022-03-11T09:46:22Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
本稿では,高分解能(イベントベース)トラフィックデータを用いた交通予測のためのデータ駆動ツールキットを開発した。
提案手法は,アラブ首長国連邦アブダビの現実世界の交通ネットワークから得られた高分解能データを用いて検証した。
論文 参考訳(メタデータ) (2020-06-22T14:26:19Z) - Joint Geographical and Temporal Modeling based on Matrix Factorization
for Point-of-Interest Recommendation [6.346772579930929]
POI(Point-of-Interest)レコメンデーションは,POIを推奨するユーザの好みやモビリティパターンを学習する重要なタスクとなっている。
従来の研究では、POI勧告を改善するためには、地理的影響や時間的影響などの文脈情報を取り入れることが必要であることが示されている。
論文 参考訳(メタデータ) (2020-01-24T12:25:37Z) - Nonlinear Traffic Prediction as a Matrix Completion Problem with
Ensemble Learning [1.8352113484137629]
本稿では,信号化トラフィック運用管理における短期的な交通予測の問題に対処する。
高分解能(秒間)におけるセンサ状態の予測に焦点をあてる
私たちのコントリビューションは,3つの洞察を提供するものとして要約することができます。
論文 参考訳(メタデータ) (2020-01-08T13:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。