DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography
- URL: http://arxiv.org/abs/2403.12787v1
- Date: Tue, 19 Mar 2024 14:51:01 GMT
- Title: DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography
- Authors: Zhenyu Bu, Yang Liu, Jiayu Huo, Jingjing Peng, Kaini Wang, Guangquan Zhou, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin,
- Abstract summary: We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
- Score: 37.32413956117856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate identification of End-Diastolic (ED) and End-Systolic (ES) frames is key for cardiac function assessment through echocardiography. However, traditional methods face several limitations: they require extensive amounts of data, extensive annotations by medical experts, significant training resources, and often lack robustness. Addressing these challenges, we proposed an unsupervised and training-free method, our novel approach leverages unsupervised segmentation to enhance fault tolerance against segmentation inaccuracies. By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images and enhance fault tolerance, all while improving robustness. Tested on Echo-dynamic and CAMUS datasets, our method achieves comparable accuracy to learning-based models without their associated drawbacks. The code is available at https://github.com/MRUIL/DDSB
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation [7.6057981800052845]
CrossMatch is a novel framework that integrates knowledge distillation with dual strategies-image-level and feature-level to improve the model's learning from both labeled and unlabeled data.
Our method significantly surpasses other state-of-the-art techniques in standard benchmarks by effectively minimizing the gap between training on labeled and unlabeled data.
arXiv Detail & Related papers (2024-05-01T07:16:03Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - Paced-Curriculum Distillation with Prediction and Label Uncertainty for
Image Segmentation [25.20877071896899]
In curriculum learning, the idea is to train on easier samples first and gradually increase the difficulty.
In self-paced learning, a pacing function defines the speed to adapt the training progress.
We develop a novel paced-curriculum distillation (PCD) for medical image segmentation.
arXiv Detail & Related papers (2023-02-02T12:24:14Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
We propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection.
Our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin.
arXiv Detail & Related papers (2021-03-29T09:27:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.