論文の概要: Modulating Localization and Classification for Harmonized Object
Detection
- arxiv url: http://arxiv.org/abs/2103.08958v1
- Date: Tue, 16 Mar 2021 10:36:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 13:28:27.173213
- Title: Modulating Localization and Classification for Harmonized Object
Detection
- Title(参考訳): 調和物体検出のための局所化と分類の変調
- Authors: Taiheng Zhang, Qiaoyong Zhong, Shiliang Pu, Di Xie
- Abstract要約: 2つのタスクを変調する相互学習フレームワークを提案する。
特に,2つのタスクは,新たな相互ラベル付け戦略によって互いに学習することを余儀なくされる。
COCOデータセットのベースライン検出器に対する大幅なパフォーマンス向上を実現しました。
- 参考スコア(独自算出の注目度): 40.82723262074911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection involves two sub-tasks, i.e. localizing objects in an image
and classifying them into various categories. For existing CNN-based detectors,
we notice the widespread divergence between localization and classification,
which leads to degradation in performance. In this work, we propose a mutual
learning framework to modulate the two tasks. In particular, the two tasks are
forced to learn from each other with a novel mutual labeling strategy. Besides,
we introduce a simple yet effective IoU rescoring scheme, which further reduces
the divergence. Moreover, we define a Spearman rank correlation-based metric to
quantify the divergence, which correlates well with the detection performance.
The proposed approach is general-purpose and can be easily injected into
existing detectors such as FCOS and RetinaNet. We achieve a significant
performance gain over the baseline detectors on the COCO dataset.
- Abstract(参考訳): オブジェクト検出には2つのサブタスクがある。
イメージ内のオブジェクトをローカライズし、それらをさまざまなカテゴリに分類する。
既存のCNNベースの検出器では、局所化と分類が広範囲に分散していることに気付き、性能が低下する。
本研究では,この2つのタスクを変調する相互学習フレームワークを提案する。
特に,2つのタスクは,新たな相互ラベル付け戦略によって互いに学習することを余儀なくされる。
さらに, 簡易かつ効果的なIoU再構成方式を導入し, 分岐の低減を図る。
さらに,検出性能と相関する発散度を定量化するために,スピアマン相関に基づく計量を定義する。
提案手法は汎用的であり,FCOSやRetinaNetなどの既存の検出器に容易に注入できる。
我々はCOCOデータセットのベースライン検出器よりも大きな性能向上を達成した。
関連論文リスト
- Decoupled DETR: Spatially Disentangling Localization and Classification
for Improved End-to-End Object Detection [48.429555904690595]
本稿では,タスク認識型問合せ生成モジュールと切り離された特徴学習プロセスを含む空間的に分離されたDETRを紹介する。
提案手法は,従来の研究に比べてMSCOCOデータセットの大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2023-10-24T15:54:11Z) - Meta-DETR: Image-Level Few-Shot Detection with Inter-Class Correlation
Exploitation [100.87407396364137]
画像レベルの最小ショット検出装置であるMeta-DETRを設計し、(i)クラス間相関メタ学習戦略を新たに導入する。
複数の数ショットのオブジェクト検出ベンチマーク実験により、提案したMeta-DETRは最先端の手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-07-30T13:46:07Z) - Exploiting Domain Transferability for Collaborative Inter-level Domain
Adaptive Object Detection [17.61278045720336]
オブジェクト検出のためのドメイン適応(DAOD)は、アノテーションなしで対象オブジェクトを検出できるため、最近注目を集めている。
従来の研究は、2段階検出器の部分的なレベルから抽出した特徴を、対向訓練によって整列させることに重点を置いていた。
本稿では,マルチスケール対応不確実性注意(MUA),転送可能領域ネットワーク(TRPN),動的インスタンスサンプリング(DIS)の3つのコンポーネントを用いた提案手法を提案する。
論文 参考訳(メタデータ) (2022-07-20T01:50:26Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Multi-object Tracking with a Hierarchical Single-branch Network [31.680667324595557]
階層的な単一ブランチネットワークに基づくオンライン多目的追跡フレームワークを提案する。
新たなiHOIM損失関数は,2つのサブタスクの目的を統一し,より優れた検出性能を実現する。
MOT16とMOT20データセットの実験結果から,最先端のトラッキング性能が達成できた。
論文 参考訳(メタデータ) (2021-01-06T12:14:58Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot Object Detection (FSOD) は、未確認の物体に迅速に適応できる検出器の学習を目的としている。
既存の方法では、共有コンポーネントを用いて分類と局所化のサブタスクを実行することで、この問題を解決している。
本稿では,2つのサブタスクの明示的な分解を考慮し,両者の情報を活用して特徴表現の強化を図ることを提案する。
論文 参考訳(メタデータ) (2020-11-30T10:21:32Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。