論文の概要: Fast Development of ASR in African Languages using Self Supervised
Speech Representation Learning
- arxiv url: http://arxiv.org/abs/2103.08993v1
- Date: Tue, 16 Mar 2021 11:37:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 18:38:35.715136
- Title: Fast Development of ASR in African Languages using Self Supervised
Speech Representation Learning
- Title(参考訳): 自己教師あり音声表現学習によるアフリカ語asrの高速開発
- Authors: Jama Hussein Mohamud, Lloyd Acquaye Thompson, Aissatou Ndoye, and
Laurent Besacier
- Abstract要約: 本稿では,2020年6月のAfrican Master of Machine Intelligence (AMMI)における非公式なコラボレーションの結果について述べる。
モバイルアプリケーションを用いた音声データ収集に関する一連の講義と研究室の後、少数の学生と講師は、Wolof、Ga、Somaliの3つの言語のための自動音声認識(ASR)プロジェクトに取り組んだ。
本稿では,データ収集方法と,少量 (1h) の書き起こし音声を訓練データとして開発したASRシステムについて述べる。
- 参考スコア(独自算出の注目度): 13.7466513616362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the results of an informal collaboration launched during
the African Master of Machine Intelligence (AMMI) in June 2020. After a series
of lectures and labs on speech data collection using mobile applications and on
self-supervised representation learning from speech, a small group of students
and the lecturer continued working on automatic speech recognition (ASR)
project for three languages: Wolof, Ga, and Somali. This paper describes how
data was collected and ASR systems developed with a small amount (1h) of
transcribed speech as training data. In these low resource conditions,
pre-training a model on large amounts of raw speech was fundamental for the
efficiency of ASR systems developed.
- Abstract(参考訳): 本稿では,2020年6月のAfrican Master of Machine Intelligence (AMMI)における非公式なコラボレーションの結果について述べる。
モバイルアプリケーションを用いた音声データ収集と音声からの自己教師型表現学習に関する一連の講義と研究室の後、学生と講師は、Wolof、Ga、Somaliの3つの言語を対象とした自動音声認識(ASR)プロジェクトに取り組んだ。
本稿では,データ収集方法と,少量 (1h) の書き起こし音声を訓練データとして開発したASRシステムについて述べる。
これらの低資源環境下では,asrシステムの効率向上のために,大量の生音声によるモデル事前学習が基本であった。
関連論文リスト
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - Speech Recognition Rescoring with Large Speech-Text Foundation Models [20.145389016219106]
大規模言語モデル(LLM)は、大量のテキストデータを活用することで、人間の言語を理解する能力を示した。
自動音声認識(ASR)システムは、しばしば利用可能な転写音声データによって制限される。
最近の多モーダルな言語モデルでは、強い音声言語理解が示されている。
論文 参考訳(メタデータ) (2024-09-25T06:17:23Z) - Error-preserving Automatic Speech Recognition of Young English Learners' Language [6.491559928368298]
言語学習者が実践しなければならない中心的なスキルの1つは、言語を話すことである。
近年の音声技術と自然言語処理の進歩は、彼らの発話スキルを実践する新しいツールの開発を可能にしている。
そこで我々は,若手学習者による自然発話に対処し,誤りを抑えるASRシステムを構築した。
論文 参考訳(メタデータ) (2024-06-05T13:15:37Z) - Enabling ASR for Low-Resource Languages: A Comprehensive Dataset Creation Approach [0.6445605125467574]
本研究では,オーディオブックからASRトレーニングデータセットを生成するための新しいパイプラインを提案する。
これらのオーディオブックの共通構造は、音声セグメントの幅が広いため、ユニークな課題である。
本稿では,音声を対応するテキストと効果的に整合させ,それをASR訓練に適した長さに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T15:38:40Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - Phonemic Representation and Transcription for Speech to Text
Applications for Under-resourced Indigenous African Languages: The Case of
Kiswahili [0.0]
キスワヒリを含むいくつかのアフリカ先住民の言語が技術的に不足していることが判明した。
本稿では,Kiswahili音声コーパスの転写過程と展開について検討する。
これは、CMU Sphinx 音声認識ツールボックスを使用して作成された ASR モデルのために、更新された Kiswahili 音素辞書を提供する。
論文 参考訳(メタデータ) (2022-10-29T09:04:09Z) - Building African Voices [125.92214914982753]
本稿では,低リソースのアフリカ言語を対象とした音声合成について述べる。
我々は,最小限の技術資源で音声合成システムを構築するための汎用的な指示セットを作成する。
研究者や開発者を支援するために、12のアフリカ言語のための音声データ、コード、訓練された音声をリリースします。
論文 参考訳(メタデータ) (2022-07-01T23:28:16Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
提案手法は,モデル学習中に1つの話者のみを用いて音声合成と音声変換を行い,ASRシステムの改善を可能にする。
対象言語における1つの実話者のみを用いてデータ拡張法を用いて、有望なASRトレーニング結果を得ることが可能である。
論文 参考訳(メタデータ) (2022-03-29T11:55:30Z) - WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing [102.45426364965887]
そこで本研究では,フルスタックダウンストリーム音声タスクを解決するための,事前学習型モデルWavLMを提案する。
WavLMはHuBERTフレームワークに基づいて構築されており、音声コンテンツモデリングと話者アイデンティティ保存の両方に重点を置いている。
トレーニングデータセットを60k時間から94k時間までの公開オーディオデータにスケールアップし、そのトレーニング手順を最適化して表現抽出を改善する。
論文 参考訳(メタデータ) (2021-10-26T17:55:19Z) - Generative Adversarial Training Data Adaptation for Very Low-resource
Automatic Speech Recognition [31.808145263757105]
我々は、CycleGANベースの非並列音声変換技術を用いて、テスト話者の音声に近いラベル付きトレーニングデータをフォージする。
AinuとMboshiの2つの低リソースコーパスに対する話者適応手法の評価を行った。
論文 参考訳(メタデータ) (2020-05-19T07:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。