YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images
- URL: http://arxiv.org/abs/2404.06180v2
- Date: Mon, 17 Jun 2024 02:34:01 GMT
- Title: YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images
- Authors: Chenguang Liu, Guangshuai Gao, Ziyue Huang, Zhenghui Hu, Qingjie Liu, Yunhong Wang,
- Abstract summary: YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
- Score: 33.80392696735718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting objects from aerial images poses significant challenges due to the following factors: 1) Aerial images typically have very large sizes, generally with millions or even hundreds of millions of pixels, while computational resources are limited. 2) Small object size leads to insufficient information for effective detection. 3) Non-uniform object distribution leads to computational resource wastage. To address these issues, we propose YOLC (You Only Look Clusters), an efficient and effective framework that builds on an anchor-free object detector, CenterNet. To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection. Additionally, we modify the regression loss using Gaussian Wasserstein distance (GWD) to obtain high-quality bounding boxes. Deformable convolution and refinement methods are employed in the detection head to enhance the detection of small objects. We perform extensive experiments on two aerial image datasets, including Visdrone2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach. Code is available at https://github.com/dawn-ech/YOLC.
Related papers
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - DASSF: Dynamic-Attention Scale-Sequence Fusion for Aerial Object Detection [6.635903943457569]
The original YOLO algorithm has low overall detection accuracy due to its weak ability to perceive targets of different scales.
This paper proposes a dynamic-attention scale-sequence fusion algorithm (DASSF) for small target detection in aerial images.
Experimental results show that when the DASSF method is applied to YOLOv8, compared to YOLOv8n, the model shows an increase of 9.2% and 2.4% in the mean average precision (mAP)
arXiv Detail & Related papers (2024-06-18T05:26:44Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
We propose a method to accurately detect small oriented objects in aerial images by enhancing the classification and regression tasks of the oriented object detection model.
We designed the Attention-Points Network consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss (BPLoss)
Experimental results show the effectiveness of our Attention-Points Network on a standard oriented aerial dataset with small object instances.
arXiv Detail & Related papers (2024-01-12T11:00:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object
Detection [24.085715205081385]
We denote size of an object as the number of pixels it covers in an image and size imbalance as the over-representation of certain sizes of objects in a dataset.
We propose a novel ARchitectUre-agnostic BAlanced Loss (ARUBA) that can be applied as a plugin on top of any object detection model.
arXiv Detail & Related papers (2022-10-10T11:28:16Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - SyNet: An Ensemble Network for Object Detection in UAV Images [13.198689566654107]
In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one.
As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy.
We report the state of the art results obtained by our proposed solution on two different datasets.
arXiv Detail & Related papers (2020-12-23T21:38:32Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.