Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher
Information
- URL: http://arxiv.org/abs/2103.09232v2
- Date: Wed, 13 Oct 2021 17:55:14 GMT
- Title: Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher
Information
- Authors: Julien Gacon, Christa Zoufal, Giuseppe Carleo, Stefan Woerner
- Abstract summary: The Quantum Fisher Information matrix (QFIM) is a central metric in promising algorithms.
We propose using simultaneous approximation techniques to approximate the QFIM at a constant cost.
We present the resulting algorithm and successfully apply it to prepare Hamiltonian ground states and train Variational Quantum Boltzmann Machines.
- Score: 0.716879432974126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Fisher Information matrix (QFIM) is a central metric in promising
algorithms, such as Quantum Natural Gradient Descent and Variational Quantum
Imaginary Time Evolution. Computing the full QFIM for a model with $d$
parameters, however, is computationally expensive and generally requires
$\mathcal{O}(d^2)$ function evaluations. To remedy these increasing costs in
high-dimensional parameter spaces, we propose using simultaneous perturbation
stochastic approximation techniques to approximate the QFIM at a constant cost.
We present the resulting algorithm and successfully apply it to prepare
Hamiltonian ground states and train Variational Quantum Boltzmann Machines.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Hybrid quantum algorithms for flow problems [0.0]
We debut here a high performance quantum simulator which we term QFlowS (Quantum Flow Simulator)
We first choose to simulate two well known flows using QFlowS and demonstrate a previously unseen, full gate-level implementation of a hybrid and high precision Quantum Linear Systems Algorithms (QLSA)
This work suggests a path towards quantum simulation of fluid flows, and highlights the special considerations needed at the gate level implementation of QC.
arXiv Detail & Related papers (2023-07-01T17:39:21Z) - Phenomenological Theory of Variational Quantum Ground-State Preparation [0.0]
The variational quantum eigensolver (VQE) algorithm aims to prepare the ground state of a Hamiltonian exploiting parametrized quantum circuits.
We show that the algorithm's success crucially depends on other parameters such as the learning rate.
We propose a symmetry-enhanced simulation protocol that should be used if the gap closes.
arXiv Detail & Related papers (2022-05-12T18:00:04Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Variational Quantum Boltzmann Machines [0.8057006406834467]
This work presents a novel realization approach to Quantum Boltzmann Machines (QBMs)
The preparation of the required Gibbs states, as well as the evaluation of the loss function's analytic gradient is based on Variational Quantum Imaginary Time Evolution.
We illustrate the application of this variational QBM approach to generative and discriminative learning tasks using numerical simulation.
arXiv Detail & Related papers (2020-06-10T18:00:09Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.