Liouvillean Spectral Transition in Noisy Quantum Many-Body Scars
- URL: http://arxiv.org/abs/2504.12291v2
- Date: Fri, 25 Apr 2025 15:16:38 GMT
- Title: Liouvillean Spectral Transition in Noisy Quantum Many-Body Scars
- Authors: Jin-Lou Ma, Zexian Guo, Yu Gao, Zlatko Papić, Lei Ying,
- Abstract summary: We show that scarred eigenmodes of the Liouvillean exhibit a transition reminiscent of spontaneous $mathbbPT$-symmetry breaking as the dephasing strength increases.<n>Remarkably, in platforms such as the XY spin ladder and PXP model of Rydberg atom arrays, the critical dephasing rate shows only weak dependence on the system size.
- Score: 11.834849388804832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the behavior of quantum many-body systems under decoherence is essential for developing robust quantum technologies. Here, we examine the fate of weak ergodicity breaking in systems hosting quantum many-body scars when subject to local pure dephasing -- an experimentally relevant form of environmental noise. Focusing on a large class of models with an approximate su(2)-structured scar subspace, we show that scarred eigenmodes of the Liouvillean exhibit a transition reminiscent of spontaneous $\mathbb{PT}$-symmetry breaking as the dephasing strength increases. Unlike previously studied non-Hermitian mechanisms, this transition arises from a distinct quantum jump effect. Remarkably, in platforms such as the XY spin ladder and PXP model of Rydberg atom arrays, the critical dephasing rate shows only weak dependence on the system size, revealing an unexpected robustness of scarred dynamics in noisy environments.
Related papers
- Enhancing Revivals Via Projective Measurements in a Quantum Scarred System [51.3422222472898]
Quantum many-body scarred systems exhibit atypical dynamical behavior, evading thermalization and featuring periodic state revivals.
We investigate the impact of projective measurements on the dynamics in the scar subspace for the paradigmatic PXP model.
We identify a measurement-induced phase resynchronization, countering the natural dephasing of quantum scars, as the key mechanism underlying this phenomenon.
arXiv Detail & Related papers (2025-03-28T17:03:14Z) - Robustness of quantum many-body scars in the presence of Markovian bath [6.7163436483983]
We study a quantum many-body system for weak ergodicity breaking hosting quantum many-body scars (QMBS)<n>We find that the system relaxes to a steady state dominated by QMBS, and the dissipative dynamics exhibit dynamic revivals by suitably preparing an initial state.<n>This makes the signature of ergodicity breaking visible over dissipative dynamics and offers potential possibilities for experimentally preparing stable QMBS.
arXiv Detail & Related papers (2025-01-01T16:22:26Z) - Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.<n> Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Observation of quantum information collapse-and-revival in a strongly-interacting Rydberg atom array [23.95382881394397]
We present the first measurements of out-of-time correlators and Holevo information in a Rydberg atom array.
By leveraging these tools, we observe a novel qu-temporal collapse-revival behaviour of quantum information.
Our experiment sheds light on the unique information dynamics in many-body systems with kinetic constraints.
arXiv Detail & Related papers (2024-10-20T17:44:39Z) - Stability of quantum many-body scars on PXP model [49.1574468325115]
We numerically compute the fidelity and average correlations to monitor the state evolution and to identify revivals.
Results indicate that, on the one hand, the entanglement entropy of PXP scars exhibit great sensitivity.
Other scar signatures, such as the revivals of states having large overlap with scars, show remarkable robustness.
arXiv Detail & Related papers (2024-07-19T22:39:15Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Driving quantum many-body scars in the PXP model [0.0]
We report a study of the effect of periodic driving on the PXP model describing Rydberg atoms.
We show that periodic modulation of the chemical potential gives rise to a rich phase diagram.
We also point out that driving with a spatially inhomogeneous chemical potential allows to stabilize quantum revivals from arbitrary initial states.
arXiv Detail & Related papers (2022-04-28T18:00:08Z) - Many-body Hilbert space scarring on a superconducting processor [19.205729719781548]
Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems.
Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis.
Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.
arXiv Detail & Related papers (2022-01-10T16:33:38Z) - Anomalous hydrodynamics in a class of scarred frustration-free
Hamiltonians [0.0]
We study the interplay between scarring and weak fragmentation in a class of one-dimensional spin-$1$ frustration-free projector Hamiltonians, known as deformed Motzkin chain.
We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions.
arXiv Detail & Related papers (2021-07-28T19:43:01Z) - Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain
with confinement [0.0]
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics.
The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime.
We show that the interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the system's dynamics beyond naive expectations.
arXiv Detail & Related papers (2021-03-17T17:01:37Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.