論文の概要: Interpretable Feature Construction for Time Series Extrinsic Regression
- arxiv url: http://arxiv.org/abs/2103.10247v1
- Date: Mon, 15 Mar 2021 08:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 10:23:51.198061
- Title: Interpretable Feature Construction for Time Series Extrinsic Regression
- Title(参考訳): 時系列外部回帰の解釈可能な特徴構成
- Authors: Dominique Gay, Alexis Bondu, Vincent Lemaire, Marc Boull\'e
- Abstract要約: 一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
- 参考スコア(独自算出の注目度): 0.028675177318965035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised learning of time series data has been extensively studied for the
case of a categorical target variable. In some application domains, e.g.,
energy, environment and health monitoring, it occurs that the target variable
is numerical and the problem is known as time series extrinsic regression
(TSER). In the literature, some well-known time series classifiers have been
extended for TSER problems. As first benchmarking studies have focused on
predictive performance, very little attention has been given to
interpretability. To fill this gap, in this paper, we suggest an extension of a
Bayesian method for robust and interpretable feature construction and selection
in the context of TSER. Our approach exploits a relational way to tackle with
TSER: (i), we build various and simple representations of the time series which
are stored in a relational data scheme, then, (ii), a propositionalisation
technique (based on classical aggregation / selection functions from the
relational data field) is applied to build interpretable features from
secondary tables to "flatten" the data; and (iii), the constructed features are
filtered out through a Bayesian Maximum A Posteriori approach. The resulting
transformed data can be processed with various existing regressors.
Experimental validation on various benchmark data sets demonstrates the
benefits of the suggested approach.
- Abstract(参考訳): 分類的対象変数の場合,時系列データの教師付き学習が広く研究されている。
エネルギー、環境、健康モニタリングといったいくつかのアプリケーション領域では、対象変数が数値であり、問題は時系列外部回帰(TSER)として知られている。
文献では、TSER問題のためによく知られた時系列分類器が拡張されている。
最初のベンチマーク研究は予測性能に焦点を当てており、解釈可能性にはほとんど注目されていない。
このギャップを埋めるため,本論文では,tserの文脈におけるロバストかつ解釈可能な特徴構成と選択のためのベイズ法の拡張を提案する。
i) 関係データスキームに格納された時系列の多種多様な単純な表現を構築し, (ii) 関係データフィールドからの古典的集約/選択関数に基づく命題化手法を適用して, 二次テーブルからデータを「フラット化」するための解釈可能な特徴を構築し, (iii) 構築した特徴をベイジアン最大 A Posteriori アプローチでフィルタリングする。
得られた変換データは、さまざまな既存のレグレッシャで処理できる。
様々なベンチマークデータセットに対する実験的検証は提案手法の利点を示している。
関連論文リスト
- Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
時系列予測のためのMetaTST(Metadata-informed Time Series Transformer)を提案する。
メタデータの非構造化の性質に取り組むため、MetaTSTは、事前に設計されたテンプレートによってそれらを自然言語に形式化する。
Transformerエンコーダは、メタデータ情報によるシーケンス表現を拡張するシリーズトークンとメタデータトークンの通信に使用される。
論文 参考訳(メタデータ) (2024-10-04T11:37:55Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Temporal Treasure Hunt: Content-based Time Series Retrieval System for
Discovering Insights [34.1973242428317]
時系列データは、金融、医療、製造業など、さまざまな分野にまたがっている。
Content-based Time Series Retrieval(CTSR)を実行する能力は、未知の時系列例を特定する上で重要である。
我々は,様々な領域の時系列データを含むCTSRベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-11-05T04:12:13Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
本研究では,時間的埋め込みを組み込んだ置換不変な深部集合ブロックからなるモデルを開発する。
実験を通して、我々のモデルはより単純なシナリオから実行されたベースラインよりも優れた一般化を提供することを示す。
論文 参考訳(メタデータ) (2022-04-07T14:02:15Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Explainable Multivariate Time Series Classification: A Deep Neural
Network Which Learns To Attend To Important Variables As Well As Informative
Time Intervals [32.30627405832656]
時系列データは、様々な現実世界のアプリケーションで広く使われている。
このような予測モデルを理解するための重要な基準は、分類に対する時間変化の入力変数の寄与を解明し定量化することである。
本稿では,変数と時間間隔を同時に識別し,分類出力を決定する新しい,モジュール型・畳み込み型特徴抽出・注目機構を提案する。
論文 参考訳(メタデータ) (2020-11-23T19:16:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。