論文の概要: Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction
- arxiv url: http://arxiv.org/abs/2106.09305v1
- Date: Thu, 17 Jun 2021 08:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 03:54:39.800706
- Title: Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction
- Title(参考訳): 時系列は特別なシーケンスである:サンプル畳み込みと相互作用による予測
- Authors: Minhao Liu, Ailing Zeng, Qiuxia Lai, Qiang Xu
- Abstract要約: 時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
- 参考スコア(独自算出の注目度): 9.449017120452675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series is a special type of sequence data, a set of observations
collected at even intervals of time and ordered chronologically. Existing deep
learning techniques use generic sequence models (e.g., recurrent neural
network, Transformer model, or temporal convolutional network) for time series
analysis, which ignore some of its unique properties. For example, the
downsampling of time series data often preserves most of the information in the
data, while this is not true for general sequence data such as text sequence
and DNA sequence. Motivated by the above, in this paper, we propose a novel
neural network architecture and apply it for the time series forecasting
problem, wherein we conduct sample convolution and interaction at multiple
resolutions for temporal modeling. The proposed architecture, namelySCINet,
facilitates extracting features with enhanced predictability. Experimental
results show that SCINet achieves significant prediction accuracy improvement
over existing solutions across various real-world time series forecasting
datasets. In particular, it can achieve high fore-casting accuracy for those
temporal-spatial datasets without using sophisticated spatial modeling
techniques. Our codes and data are presented in the supplemental material.
- Abstract(参考訳): 時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列分析にジェネリックシーケンスモデル(recurrent neural network、transformer model、temporal convolutional networkなど)を使用する。
例えば、時系列データのダウンサンプリングは、しばしばデータ内のほとんどの情報を保存しますが、テキストシーケンスやDNAシーケンスのような一般的なシーケンスデータには当てはまりません。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
提案アーキテクチャであるSCINetは,予測可能性の向上による特徴抽出を容易にする。
実験結果から,SCINetは実世界の時系列予測データセットにまたがる既存ソリューションに対して,大幅な予測精度の向上を実現していることがわかった。
特に、高度な空間モデリング技術を用いることなく、時間空間データセットに対して高いフォアキャスト精度を実現することができる。
私たちのコードとデータは補足資料で示されています。
関連論文リスト
- Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Multivariate Time Series Regression with Graph Neural Networks [0.6124773188525718]
近年のディープラーニングのグラフへの適用は,様々なグラフ関連タスクにおいて有望な可能性を示している。
しかし,これらの手法は時系列関連タスクにはあまり適用されていない。
本研究では,これらの長いシーケンスを多変量時系列回帰タスクで処理できるアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:11:46Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
本稿では,ディープニューラルネットワークとトレンドフィルタリングに基づく新しい予測フレームワークを提案する。
我々は,学習データをトレンドフィルタリングによって時間的に処理した場合,深部時相ニューラルネットワークの予測性能が向上することを明らかにする。
論文 参考訳(メタデータ) (2020-10-16T08:29:36Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。