Consistency-based Active Learning for Object Detection
- URL: http://arxiv.org/abs/2103.10374v1
- Date: Thu, 18 Mar 2021 17:00:34 GMT
- Title: Consistency-based Active Learning for Object Detection
- Authors: Weiping Yu, Sijie Zhu, Taojiannan Yang, Chen Chen
- Abstract summary: Active learning aims to improve the performance of task model by selecting the most informative samples with a limited budget.
We propose an effective Consistency-based Active Learning method for object Detection (CALD), which fully explores the consistency between original and augmented data.
- Score: 10.794744492493262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning aims to improve the performance of task model by selecting
the most informative samples with a limited budget. Unlike most recent works
that focused on applying active learning for image classification, we propose
an effective Consistency-based Active Learning method for object Detection
(CALD), which fully explores the consistency between original and augmented
data. CALD has three appealing benefits. (i) CALD is systematically designed by
investigating the weaknesses of existing active learning methods, which do not
take the unique challenges of object detection into account. (ii) CALD unifies
box regression and classification with a single metric, which is not concerned
by active learning methods for classification. CALD also focuses on the most
informative local region rather than the whole image, which is beneficial for
object detection. (iii) CALD not only gauges individual information for sample
selection, but also leverages mutual information to encourage a balanced data
distribution. Extensive experiments show that CALD significantly outperforms
existing state-of-the-art task-agnostic and detection-specific active learning
methods on general object detection datasets. Based on the Faster R-CNN
detector, CALD consistently surpasses the baseline method (random selection) by
2.9/2.8/0.8 mAP on average on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO.
Code is available at \url{https://github.com/we1pingyu/CALD}
Related papers
- Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
Uncertainty-based active learning policies fail to balance the trade-off between point cloud informativeness and box-level annotation costs.
We propose textscCrb, which hierarchically filters out the point clouds of redundant 3D bounding box labels.
Experiments show that the proposed approach outperforms existing active learning strategies.
arXiv Detail & Related papers (2023-01-23T02:43:03Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
This paper proposes a new and very simple approach to computing uncertainty in deep active learning with a Convolutional Neural Network (CNN)
The main idea is to use the feature representation extracted by the CNN as data for training a Sum-Product Network (SPN)
arXiv Detail & Related papers (2022-06-20T14:28:19Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
We propose a variance-sensitive class of models that operates in a low-label regime.
The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier.
We further extend this approach to a transductive learning setting, proposing Transductive CNAPS.
arXiv Detail & Related papers (2022-01-13T18:59:02Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Active Learning for Deep Object Detection via Probabilistic Modeling [27.195742892250916]
We propose a novel deep active learning approach for object detection.
Our approach relies on mixture density networks that estimate a probabilistic distribution for each localization and classification head's output.
Our method uses a scoring function that aggregates these two types of uncertainties for both heads to obtain every image's informativeness score.
arXiv Detail & Related papers (2021-03-30T07:37:11Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.