論文の概要: Noise Modulation: Let Your Model Interpret Itself
- arxiv url: http://arxiv.org/abs/2103.10603v1
- Date: Fri, 19 Mar 2021 02:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 14:42:30.242156
- Title: Noise Modulation: Let Your Model Interpret Itself
- Title(参考訳): ノイズ変調: モデルを自分で解釈させる
- Authors: Haoyang Li and Xinggang Wang
- Abstract要約: ノイズ変調は,入力勾配と自己を解釈するモデルを学習するための効率的かつモデル非依存な代替手段として提案する。
実験結果は、ノイズ変調が入力勾配モデルの解釈性を効果的に拡張できることを示した。
- 参考スコア(独自算出の注目度): 28.788735113859968
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Given the great success of Deep Neural Networks(DNNs) and the black-box
nature of it,the interpretability of these models becomes an important
issue.The majority of previous research works on the post-hoc interpretation of
a trained model.But recently, adversarial training shows that it is possible
for a model to have an interpretable input-gradient through
training.However,adversarial training lacks efficiency for interpretability.To
resolve this problem, we construct an approximation of the adversarial
perturbations and discover a connection between adversarial training and
amplitude modulation. Based on a digital analogy,we propose noise modulation as
an efficient and model-agnostic alternative to train a model that interprets
itself with input-gradients.Experiment results show that noise modulation can
effectively increase the interpretability of input-gradients model-agnosticly.
- Abstract(参考訳): Given the great success of Deep Neural Networks(DNNs) and the black-box nature of it,the interpretability of these models becomes an important issue.The majority of previous research works on the post-hoc interpretation of a trained model.But recently, adversarial training shows that it is possible for a model to have an interpretable input-gradient through training.However,adversarial training lacks efficiency for interpretability.To resolve this problem, we construct an approximation of the adversarial perturbations and discover a connection between adversarial training and amplitude modulation.
ディジタルアナロジーに基づいて, 入力段階のモデルに対して, モデルを学習するための効率的かつモデル非依存な代替手段としてノイズ変調を提案する。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
ステップ適応トレーニングと呼ばれる新しい2段階のトレーニング戦略を提案する。
初期段階では、ベース・デノナイジング・モデルはすべてのタイムステップを包含するように訓練される。
タイムステップを別々のグループに分割し、各グループ内でモデルを微調整して、特殊な認知機能を実現します。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
通信システムには、Deep Neural Networks(DNN)モデルに依存する変調認識など、多くのタスクがある。
これらのモデルは、逆方向の摂動、すなわち、誤分類を引き起こすために作られた知覚不能な付加音に影響を受けやすいことが示されている。
本稿では,自動変調認識モデルのロバスト性を高めるために,逆方向の摂動を伴うモデルを微調整する逆方向トレーニングを提案する。
論文 参考訳(メタデータ) (2021-05-28T11:29:04Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
RNNでは、サブオプティマティックな方法で情報をエンコーディングすることは、シーケンスの後の要素に基づいて表現の質に影響を与える可能性がある。
勾配に基づく補正機構を用いて,標準RNNへの拡張を提案する。
言語モデリングの文脈で異なる実験を行い、そのようなメカニズムを使うことによる影響を詳細に調べる。
論文 参考訳(メタデータ) (2021-01-03T17:54:17Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - An Experimental Study of Semantic Continuity for Deep Learning Models [11.883949320223078]
意味的不連続性は、不適切な訓練対象から生じ、敵対的堅牢性や解釈可能性などの悪名高い問題に寄与すると主張している。
まず、既存のディープラーニングモデルにおける意味的不連続性の証拠を提供するためにデータ分析を行い、その後、理論上モデルがスムーズな勾配を得ることができ、セマンティック指向の特徴を学習できる単純な意味的連続性制約を設計する。
論文 参考訳(メタデータ) (2020-11-19T12:23:28Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。