Dependency Graph-to-String Statistical Machine Translation
- URL: http://arxiv.org/abs/2103.11089v1
- Date: Sat, 20 Mar 2021 04:20:56 GMT
- Title: Dependency Graph-to-String Statistical Machine Translation
- Authors: Liangyou Li and Andy Way and Qun Liu
- Abstract summary: Source graphs are constructed from dependency trees with extra links so that non-syntactic phrases are connected.
Inspired by phrase-based models, we first introduce a translation model which segments a graph into a sequence of disjoint subgraphs and generates a translation by combining subgraph translations left-to-right using beam search.
- Score: 40.91501320179243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present graph-based translation models which translate source graphs into
target strings. Source graphs are constructed from dependency trees with extra
links so that non-syntactic phrases are connected. Inspired by phrase-based
models, we first introduce a translation model which segments a graph into a
sequence of disjoint subgraphs and generates a translation by combining
subgraph translations left-to-right using beam search. However, similar to
phrase-based models, this model is weak at phrase reordering. Therefore, we
further introduce a model based on a synchronous node replacement grammar which
learns recursive translation rules. We provide two implementations of the model
with different restrictions so that source graphs can be parsed efficiently.
Experiments on Chinese--English and German--English show that our graph-based
models are significantly better than corresponding sequence- and tree-based
baselines.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language
Models [33.56759621666477]
We present a benchmark dataset for evaluating the integration of graph knowledge into language models.
The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation.
We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
arXiv Detail & Related papers (2023-10-12T16:46:58Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
We introduce the node copying model for constructing a distribution over graphs.
We show the usefulness of the copying model in three tasks.
We employ our proposed model to mitigate the effect of adversarial attacks on the graph topology.
arXiv Detail & Related papers (2022-08-04T04:04:49Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Inducing Alignment Structure with Gated Graph Attention Networks for
Sentence Matching [24.02847802702168]
This paper proposes a graph-based approach for sentence matching.
We represent a sentence pair as a graph with several carefully design strategies.
We then employ a novel gated graph attention network to encode the constructed graph for sentence matching.
arXiv Detail & Related papers (2020-10-15T11:25:54Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.