NCoRE: Neural Counterfactual Representation Learning for Combinations of
Treatments
- URL: http://arxiv.org/abs/2103.11175v1
- Date: Sat, 20 Mar 2021 13:25:00 GMT
- Title: NCoRE: Neural Counterfactual Representation Learning for Combinations of
Treatments
- Authors: Sonali Parbhoo, Stefan Bauer, Patrick Schwab
- Abstract summary: We present Neural Counterfactual Relation Estimation (NCoRE), a new method for learning counterfactual representations in the combination treatment setting.
NCoRE is based on a novel branched conditional neural representation that includes learnt treatment interaction modulators to infer the potential causal generative process underlying the combination of multiple treatments.
- Score: 26.991483018857803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating an individual's potential response to interventions from
observational data is of high practical relevance for many domains, such as
healthcare, public policy or economics. In this setting, it is often the case
that combinations of interventions may be applied simultaneously, for example,
multiple prescriptions in healthcare or different fiscal and monetary measures
in economics. However, existing methods for counterfactual inference are
limited to settings in which actions are not used simultaneously. Here, we
present Neural Counterfactual Relation Estimation (NCoRE), a new method for
learning counterfactual representations in the combination treatment setting
that explicitly models cross-treatment interactions. NCoRE is based on a novel
branched conditional neural representation that includes learnt treatment
interaction modulators to infer the potential causal generative process
underlying the combination of multiple treatments. Our experiments show that
NCoRE significantly outperforms existing state-of-the-art methods for
counterfactual treatment effect estimation that do not account for the effects
of combining multiple treatments across several synthetic, semi-synthetic and
real-world benchmarks.
Related papers
- Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes [13.925793826373706]
Estimating individualised treatment effect (ITE) remains a fundamental problem in causal inference.
Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes.
We propose a novel and innovative hypernetwork-based approach, called emphH-Learner, to solve ITE estimation under composite treatments and composite outcomes.
arXiv Detail & Related papers (2025-02-12T10:41:21Z) - Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
We introduce a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference.
Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data.
arXiv Detail & Related papers (2024-11-01T18:00:51Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Adversarially Balanced Representation for Continuous Treatment Effect
Estimation [6.469020202994118]
In this paper, we consider the more practical and challenging scenario in which the treatment is a continuous variable.
We propose the adversarial counterfactual regression network (ACFR) that adversarially minimizes the representation imbalance in terms of KL divergence.
Our experimental evaluation on semi-synthetic datasets demonstrates the empirical superiority of ACFR over a range of state-of-the-art methods.
arXiv Detail & Related papers (2023-12-17T00:46:16Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Stochastic Intervention for Causal Inference via Reinforcement Learning [7.015556609676951]
Central to causal inference is the treatment effect estimation of intervention strategies.
Existing methods are mostly restricted to the deterministic treatment and compare outcomes under different treatments.
We propose a new effective framework to estimate the treatment effect on intervention.
arXiv Detail & Related papers (2021-05-28T00:11:22Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.