論文の概要: Understanding Heart-Failure Patients EHR Clinical Features via SHAP
Interpretation of Tree-Based Machine Learning Model Predictions
- arxiv url: http://arxiv.org/abs/2103.11254v1
- Date: Sat, 20 Mar 2021 22:17:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:15:15.412738
- Title: Understanding Heart-Failure Patients EHR Clinical Features via SHAP
Interpretation of Tree-Based Machine Learning Model Predictions
- Title(参考訳): ツリーベース機械学習モデル予測のSHAP解釈による心不全患者の臨床像の理解
- Authors: Shuyu Lu, Ruoyu Chen, Wei Wei, Xinghua Lu
- Abstract要約: 心不全(Heart failure, HF)は、死因の一つ。
機械学習モデル、具体的にはXGBoostモデルがEHRに基づいて患者ステージを正確に予測できるかどうかを検討した。
以上の結果から,EHRの構造化データに基づいて,患者の退院率(EF)を適度な精度で予測できることが示唆された。
- 参考スコア(独自算出の注目度): 8.444557621643568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart failure (HF) is a major cause of mortality. Accurately monitoring HF
progress and adjust therapies are critical for improving patient outcomes. An
experienced cardiologist can make accurate HF stage diagnoses based on
combination of symptoms, signs, and lab results from the electronic health
records (EHR) of a patient, without directly measuring heart function. We
examined whether machine learning models, more specifically the XGBoost model,
can accurately predict patient stage based on EHR, and we further applied the
SHapley Additive exPlanations (SHAP) framework to identify informative features
and their interpretations. Our results indicate that based on structured data
from EHR, our models could predict patients' ejection fraction (EF) scores with
moderate accuracy. SHAP analyses identified informative features and revealed
potential clinical subtypes of HF. Our findings provide insights on how to
design computing systems to accurately monitor disease progression of HF
patients through continuously mining patients' EHR data.
- Abstract(参考訳): 心不全(Heart failure, HF)は、死因の一つ。
患者の予後を改善するには、hf進行の正確なモニタリングと治療の調整が不可欠である。
経験豊富な心臓医は、心機能を直接測定することなく、患者の電子健康記録(EHR)から症状、兆候、検査結果の組み合わせに基づいて正確なHFステージ診断を行うことができる。
機械学習モデル、特にxgboostモデルがehrに基づいて患者ステージを正確に予測できるかどうかを検証し、さらにshapley additive descriptions(shap)フレームワークを適用して情報的特徴とその解釈を同定した。
以上の結果から,EHRの構造化データに基づいて,患者の退院率(EF)を適度な精度で予測できることが示唆された。
SHAPは情報的特徴を同定し,HFの潜在的な臨床サブタイプを明らかにした。
本研究は,HF患者のEHRデータを連続的にマイニングすることで,HF患者の疾患進行を正確にモニタリングするコンピュータシステムの設計方法に関する知見を提供する。
関連論文リスト
- Fine-tuning pre-trained extractive QA models for clinical document
parsing [0.0]
心不全(HF)患者に対する遠隔患者のモニタリングプログラムは、EF(Ejection Fraction)やLVEF(Left Ventricular Ejection Fraction)のような臨床マーカーにアクセスする必要がある。
本稿では,心エコー図を解析し,EF値を検証するシステムについて述べる。
このシステムは、大規模なタスクを自動化して、12ヶ月で1500時間以上、臨床医を救った。
論文 参考訳(メタデータ) (2023-12-04T19:52:56Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Enhancing Mortality Prediction in Heart Failure Patients: Exploring
Preprocessing Methods for Imbalanced Clinical Datasets [0.0]
心不全 (Heart failure, HF) は、患者の管理決定を導く上で、死亡率の正確な予測が重要な役割を果たす重要な疾患である。
本稿では,スケーリング,アウトレーヤ処理,再サンプリングを含む包括的事前処理フレームワークを提案する。
適切な前処理技術と機械学習(ML)アルゴリズムを活用することで,HF患者の死亡予測性能を向上させることを目指す。
論文 参考訳(メタデータ) (2023-09-30T18:31:15Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
本研究は、心不全生存予測モデルの説明可能性分析と評価について述べる。
このモデルでは、最高のアンサンブルツリーアルゴリズムを選択できるデータワークフローパイプラインと、最高の機能選択テクニックが採用されている。
本論文の主な貢献は、精度-説明可能性バランスに基づいて、HF生存率の最良の予測モデルを選択するための説明可能性駆動型アプローチである。
論文 参考訳(メタデータ) (2021-08-20T09:03:26Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - EVA: Generating Longitudinal Electronic Health Records Using Conditional
Variational Autoencoders [34.22731849545798]
離散的な EHR の出会いと出会いの特徴を合成するための EHR Variational Autoencoder (EVA) を提案する。
EVAは現実的なシーケンスを生成でき、患者間の個人差を考慮し、特定の疾患条件で条件付けできる。
250,000人以上の患者を含む大規模な現実世界のEHRリポジトリの方法の有用性を評価します。
論文 参考訳(メタデータ) (2020-12-18T02:37:49Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。