論文の概要: Enhancing clinical decision support with physiological waveforms -- a multimodal benchmark in emergency care
- arxiv url: http://arxiv.org/abs/2407.17856v4
- Date: Wed, 30 Apr 2025 21:32:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.893858
- Title: Enhancing clinical decision support with physiological waveforms -- a multimodal benchmark in emergency care
- Title(参考訳): 生理的波形による臨床診断支援の強化 -- 救急医療におけるマルチモーダル・ベンチマーク
- Authors: Juan Miguel Lopez Alcaraz, Hjalmar Bouma, Nils Strodthoff,
- Abstract要約: 本稿では,救急医療におけるマルチモーダル意思決定支援を推進すべく,データセットとベンチマークプロトコルを提案する。
本モデルでは, 人口統計, バイオメトリックス, バイタルサイン, 検査値, 心電図(ECG)波形を入力として, 放電診断と患者の劣化の双方を予測する。
- 参考スコア(独自算出の注目度): 0.9503773054285559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: AI-driven prediction algorithms have the potential to enhance emergency medicine by enabling rapid and accurate decision-making regarding patient status and potential deterioration. However, the integration of multimodal data, including raw waveform signals, remains underexplored in clinical decision support. Methods: We present a dataset and benchmarking protocol designed to advance multimodal decision support in emergency care. Our models utilize demographics, biometrics, vital signs, laboratory values, and electrocardiogram (ECG) waveforms as inputs to predict both discharge diagnoses and patient deterioration. Results: The diagnostic model achieves area under the receiver operating curve (AUROC) scores above 0.8 for 609 out of 1,428 conditions, covering both cardiac (e.g., myocardial infarction) and non-cardiac (e.g., renal disease, diabetes) diagnoses. The deterioration model attains AUROC scores above 0.8 for 14 out of 15 targets, accurately predicting critical events such as cardiac arrest, mechanical ventilation, ICU admission, and mortality. Conclusions: Our study highlights the positive impact of incorporating raw waveform data into decision support models, improving predictive performance. By introducing a unique, publicly available dataset and baseline models, we provide a foundation for measurable progress in AI-driven decision support for emergency care.
- Abstract(参考訳): 背景: AIによる予測アルゴリズムは、患者の状態と潜在的な劣化に関する迅速かつ正確な意思決定を可能にすることで、救急医療を強化する可能性がある。
しかし, 生波形信号を含むマルチモーダルデータの統合は, 臨床診断支援において未検討である。
方法: 救急医療におけるマルチモーダル意思決定支援を推進すべく, データセットとベンチマークプロトコルを提案する。
本モデルでは, 人口統計, バイオメトリックス, バイタルサイン, 検査値, 心電図(ECG)波形を入力として, 放電診断と患者の劣化の双方を予測する。
結果:AUROCは1,428例中0.8以上で1,428例中609例で,非心筋(eg,心筋梗塞)と非心筋(eg,腎疾患,糖尿病)の診断を行った。
劣化モデルでは, 心停止, 機械的換気, ICU入院, 死亡などの重要な事象を正確に予測し, AUROC スコアが 0.8 以上に達した。
結論:本研究は,生波形データを意思決定支援モデルに組み込むことによる肯定的な影響を強調し,予測性能を向上する。
ユニークな、公開可能なデータセットとベースラインモデルを導入することで、緊急ケアのためのAI駆動意思決定サポートの計測可能な進歩の基礎を提供する。
関連論文リスト
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - A multi-cohort study on prediction of acute brain dysfunction states
using selective state space models [12.0129301272171]
急性脳機能障害(ABD)は、その流行と患者の予後に深刻な影響があるため、重要な課題である。
本研究はElectronic Health Records(EHR)データを利用してこれらの問題を解決する。
既存のモデルでは1つの状態(例えば、デリリウムまたはコマ)だけを予測するには少なくとも24時間の観測データが必要である。
ICU滞在中12時間間隔でデリリウム、コマ、死亡、変動を動的に予測することで、既存の文献におけるこれらのギャップを埋める。
論文 参考訳(メタデータ) (2024-03-11T22:58:11Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
患者のMS病重症度を予測するための多モード深層学習フレームワークを構築するために,構造化ERHデータ,ニューロイメージングデータ,臨床ノートを活用するパイロット取り組みについて述べる。
提案したパイプラインは、単一モーダルデータを用いたモデルと比較して、受信者動作特性曲線(AUROC)の下での面積の最大25%増加を示す。
論文 参考訳(メタデータ) (2023-04-08T16:23:18Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
終末期腎疾患(ESRD)に対する腹膜透析(PD)は最も広く用いられている生命維持療法の1つである
本稿では,リアルタイム,個別化,解釈可能な死亡予測モデル - AICare のためのディープラーニングモデルを開発することを目的とする。
本研究は656 PD患者13,091 人の臨床経過と人口統計データを収集した。
論文 参考訳(メタデータ) (2023-01-17T13:17:54Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
本研究では,30日間の院内通院予測のためのマルチモーダル・モダリティ非依存型グラフニューラルネットワーク(MM-STGNN)を提案する。
MM-STGNNは、プライマリデータセットと外部データセットの両方で0.79のAUを達成する。
心臓・血管疾患患者のサブセットでは,30日間の寛解予測において,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-04-14T05:50:07Z) - Towards dynamic multi-modal phenotyping using chest radiographs and
physiological data [3.11179491890629]
本稿では,モダリティ固有のデータ表現を学習し,補助的特徴を統合するための動的トレーニング手法を提案する。
MIMIC-IVおよび胸部X線写真を用いたMIMIC-CXRデータセットを用いた患者表現型検索の予備実験を行った。
このことは、表現型タスクにおける胸部画像モダリティの活用の利点を示し、医療応用におけるマルチモーダル学習の可能性を強調している。
論文 参考訳(メタデータ) (2021-11-04T09:41:00Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
本研究は、心不全生存予測モデルの説明可能性分析と評価について述べる。
このモデルでは、最高のアンサンブルツリーアルゴリズムを選択できるデータワークフローパイプラインと、最高の機能選択テクニックが採用されている。
本論文の主な貢献は、精度-説明可能性バランスに基づいて、HF生存率の最良の予測モデルを選択するための説明可能性駆動型アプローチである。
論文 参考訳(メタデータ) (2021-08-20T09:03:26Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。