論文の概要: Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm
- arxiv url: http://arxiv.org/abs/2108.13367v1
- Date: Mon, 30 Aug 2021 16:42:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 15:04:59.782984
- Title: Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm
- Title(参考訳): スタック型アンサンブル機械学習アルゴリズムを用いた心不全患者の生存予測
- Authors: S.M Mehedi Zaman, Wasay Mahmood Qureshi, Md. Mohsin Sarker Raihan,
Ocean Monjur and Abdullah Bin Shams
- Abstract要約: 心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular disease, especially heart failure is one of the major health
hazard issues of our time and is a leading cause of death worldwide.
Advancement in data mining techniques using machine learning (ML) models is
paving promising prediction approaches. Data mining is the process of
converting massive volumes of raw data created by the healthcare institutions
into meaningful information that can aid in making predictions and crucial
decisions. Collecting various follow-up data from patients who have had heart
failures, analyzing those data, and utilizing several ML models to predict the
survival possibility of cardiovascular patients is the key aim of this study.
Due to the imbalance of the classes in the dataset, Synthetic Minority
Oversampling Technique (SMOTE) has been implemented. Two unsupervised models
(K-Means and Fuzzy C-Means clustering) and three supervised classifiers (Random
Forest, XGBoost and Decision Tree) have been used in our study. After thorough
investigation, our results demonstrate a superior performance of the supervised
ML algorithms over unsupervised models. Moreover, we designed and propose a
supervised stacked ensemble learning model that can achieve an accuracy,
precision, recall and F1 score of 99.98%. Our study shows that only certain
attributes collected from the patients are imperative to successfully predict
the surviving possibility post heart failure, using supervised ML algorithms.
- Abstract(参考訳): 心臓血管疾患、特に心不全は、当時の主要な健康上の問題の一つであり、世界中で死因となっている。
機械学習(ML)モデルを用いたデータマイニング技術の進歩は、有望な予測アプローチを織り込んでいる。
データマイニングは、医療機関が作成した大量の生データを、予測や決定を下すのに役立つ意味のある情報に変換するプロセスである。
本研究の目的は、心不全患者からの各種追跡データを収集し、それらのデータを分析し、いくつかのmlモデルを用いて心血管系患者の生存可能性を予測することである。
データセット内のクラスの不均衡のため、SMOTE(Synthetic Minority Oversampling Technique)が実装されている。
2つの教師なしモデル(K-Means, Fuzzy C-Meansクラスタリング)と3つの教師なし分類器(Random Forest, XGBoost, Decision Tree)を用いた。
その結果,教師なしモデルよりも教師なしMLアルゴリズムの方が優れた性能を示した。
さらに,精度,精度,リコール,F1スコアの99.98%を達成できる教師付きアンサンブル学習モデルの設計と提案を行った。
本研究は、患者から収集した特定の属性のみが、教師付きMLアルゴリズムを用いて、心不全後の生存可能性を予測するために必須であることを示す。
関連論文リスト
- Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
心臓病は深刻な世界的な健康問題で、毎年何百万人もの命がかかっています。
本稿では,決定木(DT),ランダムフォレスト(RF),線形判別分析,エクストラツリーブースト,アダブーストという5つの機械学習手法を用いた。
ランダムフォレストと決定木モデルの精度は99.83%だった。
論文 参考訳(メタデータ) (2024-07-26T08:56:13Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
5種類の機械学習手法の分類精度,精度,リコール,F-1スコアを評価し,比較した。
XGBoostは97%という最高のモデル精度を達成した。
論文 参考訳(メタデータ) (2024-04-06T17:23:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases [0.0]
この研究は、いくつかの機械学習に基づく分類モデルを作成し、テストした。
その結果、ロジスティック回帰は、元のデータセット上で最高のパフォーマンススコアを生み出した。
結論として,順調に処理され,標準化されたデータセット上のLRが,他のアルゴリズムよりも精度の高い冠状心疾患を予測できることが示唆された。
論文 参考訳(メタデータ) (2021-12-02T18:52:56Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
発作予知システムの目的は、発作が起こる前に起こる前頭前脳のステージを正常に識別することである。
患者に依存しない発作予測モデルは、データセット内の複数の被験者に正確なパフォーマンスを提供するように設計されている。
患者に依存しない2つの深層学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T23:13:48Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。