Scatter Correction in X-ray CT by Physics-Inspired Deep Learning
- URL: http://arxiv.org/abs/2103.11509v1
- Date: Sun, 21 Mar 2021 22:51:20 GMT
- Title: Scatter Correction in X-ray CT by Physics-Inspired Deep Learning
- Authors: Berk Iskender, Yoram Bresler
- Abstract summary: A fundamental problem in X-ray Computed Tomography (CT) is the scatter due to interaction of photons with the imaged object.
Scatter correction methods can be divided into two categories: hardware-based; and software-based.
In this work, two novel physics-inspired deep-learning-based methods, PhILSCAT and OV-PhILSCAT, are proposed.
- Score: 26.549671705231145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem in X-ray Computed Tomography (CT) is the scatter due to
interaction of photons with the imaged object. Unless corrected, scatter
manifests itself as degradations in the reconstructions in the form of various
artifacts. Scatter correction is therefore critical for reconstruction quality.
Scatter correction methods can be divided into two categories: hardware-based;
and software-based. Despite success in specific settings, hardware-based
methods require modification in the hardware, or increase in the scan time or
dose. This makes software-based methods attractive. In this context,
Monte-Carlo based scatter estimation, analytical-numerical, and kernel-based
methods were developed. Furthermore, data-driven approaches to tackle this
problem were recently demonstrated. In this work, two novel physics-inspired
deep-learning-based methods, PhILSCAT and OV-PhILSCAT, are proposed. The
methods estimate and correct for the scatter in the acquired projection
measurements. They incorporate both an initial reconstruction of the object of
interest and the scatter-corrupted measurements related to it. They use a
common deep neural network architecture and cost function, both tailored to the
problem. Numerical experiments with data obtained by Monte-Carlo simulations of
the imaging of phantoms reveal significant improvement over a recent purely
projection-domain deep neural network scatter correction method.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
We present a novel deep-learning solution for material decomposition in PCCT, based on an unrolled/unfolded iterative network.
Our approach outperforms a maximum likelihood estimation, a variational method, as well as a fully-learned network.
arXiv Detail & Related papers (2022-08-05T19:05:16Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - 3D Scattering Tomography by Deep Learning with Architecture Tailored to
Cloud Fields [12.139158398361866]
We present 3DeepCT, a deep neural network for computed tomography, which performs 3D reconstruction of scattering volumes from multi-view images.
We show that 3DeepCT outperforms physics-based inverse scattering methods in term of accuracy as well as offering a significant orders of magnitude improvement in computational time.
arXiv Detail & Related papers (2020-12-10T20:31:44Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A novel deep learning-based method for monochromatic image synthesis
from spectral CT using photon-counting detectors [7.190103828139802]
We propose a novel deep learning-based monochromatic image synthesis method working in sinogram domain.
Our method was tested on a cone-beam CT (CBCT) system equipped with a PCD.
arXiv Detail & Related papers (2020-07-20T03:44:57Z) - X-ray Photon-Counting Data Correction through Deep Learning [3.535670189300134]
We propose a deep neural network based PCD data correction approach.
In this work, we first establish a complete simulation model incorporating the charge splitting and pulse pile-up effects.
The simulated PCD data and the ground truth counterparts are then fed to a specially designed deep adversarial network for PCD data correction.
arXiv Detail & Related papers (2020-07-06T23:29:16Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.