論文の概要: Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries
- arxiv url: http://arxiv.org/abs/2103.11580v1
- Date: Mon, 22 Mar 2021 04:53:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:08:28.887826
- Title: Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries
- Title(参考訳): リチウムイオン電池の電気化学モデリングと機械学習の統合
- Authors: Hao Tu, Scott Moura, Huazhen Fang
- Abstract要約: 本稿では,リチウムイオン電池(LiB)の高精度モデリングを実現するために,物理モデルと機械学習を統合する新しい手法を提案する。
本稿では,1粒子モデルと熱力学(SPMT)をフィードフォワードニューラルネットワーク(FNN)とを混合して,LiBの動的挙動の物理インフォームド学習を行うアプローチに基づく2つのハイブリッド物理機械学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical modeling of lithium-ion batteries (LiBs) is a central challenge
in advanced battery management. This paper presents a new approach to integrate
a physics-based model with machine learning to achieve high-precision modeling
for LiBs. This approach uniquely proposes to inform the machine learning model
of the dynamic state of the physical model, enabling a deep integration between
physics and machine learning. We propose two hybrid physics-machine learning
models based on the approach, which blend a single particle model with thermal
dynamics (SPMT) with a feedforward neural network (FNN) to perform
physics-informed learning of a LiB's dynamic behavior. The proposed models are
relatively parsimonious in structure and can provide considerable predictive
accuracy even at high C-rates, as shown by extensive simulations.
- Abstract(参考訳): リチウムイオン電池(LiBs)の数学的モデリングは、高度な電池管理において重要な課題である。
本稿では,LiBの高精度モデリングを実現するために,物理モデルと機械学習を統合する新しい手法を提案する。
このアプローチは、物理モデルの動的状態を機械学習モデルに通知することを提案し、物理と機械学習の深い統合を可能にする。
本稿では,1粒子モデルと熱力学(SPMT)をフィードフォワードニューラルネットワーク(FNN)とを混合して,LiBの動的挙動の物理インフォームド学習を行うアプローチに基づく2つのハイブリッド物理機械学習モデルを提案する。
提案したモデルは構造的に比較的類似しており、広範囲なシミュレーションで示されるように、高いCレートでもかなりの予測精度が得られる。
関連論文リスト
- MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-Informed Neural Networks for Prognostics and Health Management
of Lithium-Ion Batteries [8.929862063890974]
物理インフォームドニューラルネットワーク(PINN)に基づくモデル融合方式を提案する。
半経験的半物理偏微分方程式(PDE)を開発し、リチウムイオン電池の劣化ダイナミクスをモデル化する。
発見されたダイナミクス情報は、PINNフレームワークのサロゲートニューラルネットワークがマイニングしたものと融合する。
論文 参考訳(メタデータ) (2023-01-02T17:51:23Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Integrating Physics-Based Modeling with Machine Learning for Lithium-Ion Batteries [4.946066838162504]
本稿では,LiBの高精度モデリングを実現するために,物理モデルと機械学習を統合する2つの新しいフレームワークを提案する。
これらのフレームワークは、物理モデルの状態情報の機械学習モデルに通知することで特徴付けられる。
この研究はさらに、老化を意識したハイブリッドモデリングの実施へと拡張され、予測を行うために健康状態に意識したハイブリッドモデルの設計につながった。
論文 参考訳(メタデータ) (2021-12-24T07:39:02Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
実用的なパワーシステムでは、動的コンポーネントモデリングはモデル決定とモデルキャリブレーションの課題に長年直面してきた。
本稿では, ニューラル常微分方程式 (ODE) の一般的な枠組みに基づいて, 電力系統動的成分モデリングのためのニューラル常微分方程式 (ODE) モジュールとニューラル微分代数方程式 (DAE) モジュールを提案する。
モジュールはオートエンコーダを採用し、状態変数の次元を高め、人工知能ニューラルネットワーク(ANN)でコンポーネントのダイナミクスをモデル化し、数値積分構造を維持する。
論文 参考訳(メタデータ) (2021-10-25T14:15:45Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。