論文の概要: Neural ODE and DAE Modules for Power System Dynamic Modeling
- arxiv url: http://arxiv.org/abs/2110.12981v1
- Date: Mon, 25 Oct 2021 14:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 17:40:38.661966
- Title: Neural ODE and DAE Modules for Power System Dynamic Modeling
- Title(参考訳): 電力系統動的モデリングのためのニューラルODEとDAEモジュール
- Authors: Tannan Xiao, Ying Chen, Tirui He, and Huizhe Guan
- Abstract要約: 実用的なパワーシステムでは、動的コンポーネントモデリングはモデル決定とモデルキャリブレーションの課題に長年直面してきた。
本稿では, ニューラル常微分方程式 (ODE) の一般的な枠組みに基づいて, 電力系統動的成分モデリングのためのニューラル常微分方程式 (ODE) モジュールとニューラル微分代数方程式 (DAE) モジュールを提案する。
モジュールはオートエンコーダを採用し、状態変数の次元を高め、人工知能ニューラルネットワーク(ANN)でコンポーネントのダイナミクスをモデル化し、数値積分構造を維持する。
- 参考スコア(独自算出の注目度): 2.342020413587919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The time-domain simulation is the fundamental tool for power system transient
stability analysis. Accurate and reliable simulations rely on accurate dynamic
component modeling. In practical power systems, dynamic component modeling has
long faced the challenges of model determination and model calibration,
especially with the rapid development of renewable generation and power
electronics. In this paper, based on the general framework of neural ordinary
differential equations (ODEs), a modified neural ODE module and a neural
differential-algebraic equations (DAEs) module for power system dynamic
component modeling are proposed. The modules adopt an autoencoder to raise the
dimension of state variables, model the dynamics of components with artificial
neural networks (ANNs), and keep the numerical integration structure. In the
neural DAE module, an additional ANN is used to calculate injection currents.
The neural models can be easily integrated into time-domain simulations. With
datasets consisting of sampled curves of input variables and output variables,
the proposed modules can be used to fulfill the tasks of parameter inference,
physics-data-integrated modeling, black-box modeling, etc., and can be easily
integrated into power system dynamic simulations. Some simple numerical tests
are carried out in the IEEE-39 system and prove the validity and potentiality
of the proposed modules.
- Abstract(参考訳): 時間領域シミュレーションは電力系統過渡安定解析の基本的なツールである。
正確で信頼性の高いシミュレーションは、正確な動的コンポーネントモデリングに依存している。
実用的な電力システムでは、動的部品モデリングは、特に再生可能発電と電力エレクトロニクスの急速な発展において、モデル決定とモデルキャリブレーションの課題に直面してきた。
本稿では,ニューラル常微分方程式(odes)の一般的な枠組みに基づいて,改良型ニューラルodeモジュールと,電力系統動的成分モデリングのためのニューラル微分代数方程式(daes)モジュールを提案する。
モジュールはオートエンコーダを採用し、状態変数の次元を高め、人工知能ニューラルネットワーク(ANN)でコンポーネントのダイナミクスをモデル化し、数値積分構造を維持する。
ニューラルDAEモジュールでは、追加のANNを使用して注入電流を算出する。
神経モデルは、時間領域シミュレーションに容易に統合できる。
入力変数と出力変数のサンプル曲線からなるデータセットを用いて、提案モジュールはパラメータ推論、物理データ統合モデリング、ブラックボックスモデリングなどのタスクを満足させ、電力系統の動的シミュレーションに容易に組み込むことができる。
IEEE-39システムでいくつかの簡単な数値実験を行い、提案モジュールの有効性と可能性を証明する。
関連論文リスト
- ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
モデルの学習過程に,正確なリアルタイム入力情報を組み込んだ入力共役ニューラルネットワーク(ICODE)を導入する。
いくつかの代表的実動力学の実験を通して本手法を検証する。
この研究は、明示的な外部入力情報で物理的システムを理解するための貴重なニューラルネットワークODEモデルのクラスを提供する。
論文 参考訳(メタデータ) (2024-11-21T07:57:59Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Neural Modal ODEs: Integrating Physics-based Modeling with Neural ODEs
for Modeling High Dimensional Monitored Structures [9.065343126886093]
本稿では、物理に基づくモデリングとディープラーニングを統合するためのフレームワーク、Neural Modal ODEを提案する。
オートエンコーダは、観測データの最初の数項目から潜伏変数の初期値までの抽象的なマッピングを学習する。
提案モデルの復号器は, 線形化部分に適用された固有解析から導出した固有モードを物理モデルに適用する。
論文 参考訳(メタデータ) (2022-07-16T09:30:20Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
ディープニューラルネットワークやリカレントニューラルネットワーク(RNN)などのデータ駆動機械学習モデルが,現実的な代替手段になりつつある。
本研究では,計測可能な材料に基づく経路依存材料に対する,機械学習型ロバスト性駆動型モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-01T23:25:08Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition [1.933681537640272]
半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
複数の個別回路要素の詳細なモデルを評価することは、計算上不可能である。
本稿では,大規模回路シミュレーションで実装可能な小型遅延光電流モデルの学習手順を示す。
論文 参考訳(メタデータ) (2020-08-27T18:21:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。