Various variational approximations of quantum dynamics
- URL: http://arxiv.org/abs/2103.11783v2
- Date: Wed, 13 Oct 2021 07:10:09 GMT
- Title: Various variational approximations of quantum dynamics
- Authors: Caroline Lasser and Chunmei Su
- Abstract summary: We investigate variational principles for the approximation of quantum dynamics that apply to approximations that do not have complex linear tangent spaces.
We characterize both principles in terms of metric and a symplecticity conditions, consider their conservation properties, and derive an elementary a-posteriori error estimate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate variational principles for the approximation of quantum
dynamics that apply for approximation manifolds that do not have complex linear
tangent spaces. The first one, dating back to McLachlan (1964) minimizes the
residuum of the time-dependent Schr\"odinger equation, while the second one,
originating from the lecture notes of Kramer--Saraceno (1981), imposes the
stationarity of an action functional. We characterize both principles in terms
of metric and a symplectic orthogonality conditions, consider their
conservation properties, and derive an elementary a-posteriori error estimate.
As an application, we revisit the time-dependent Hartree approximation and
frozen Gaussian wave packets.
Related papers
- Exploring entanglement in finite-size quantum systems with degenerate ground state [0.0]
We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states.
We generate a finite set of their random linear combinations with Haar measure, which guarantees that these combinations are uniformly distributed in the space spanned by the initial eigenstates.
We elaborate on the problem of estimating observables on the basis of the single-shot measurements of numerous degenerate eigenstates.
arXiv Detail & Related papers (2024-10-01T08:56:34Z) - Leading correction to the relativistic Foldy-Wouthuysen Hamiltonian [55.2480439325792]
We rigorously derive a leading correction in the weak-field approximation to the known relativistic Foldy-Wouthuysen Hamiltonian.
For Dirac particles, the relativistic wave equation of the second order is obtained with the correction similar to that to the Foldy-Wouthuysen Hamiltonian.
arXiv Detail & Related papers (2024-08-03T12:53:41Z) - A First Principles Numerical Demonstration of Emergent Decoherent Histories [0.0]
We find a robust emergence of decoherence for slow and coarse observables of a generic random matrix model.
We conjecture and observe an exponential suppression of coherent effects as a function of the particle number of the system.
arXiv Detail & Related papers (2023-04-20T12:26:32Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Page curves and typical entanglement in linear optics [0.0]
We study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary.
We prove various results on the typicality of entanglement as measured by the R'enyi-2 entropy.
Our main make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation [0.0]
We propose a method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems.
We show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals.
arXiv Detail & Related papers (2020-05-17T13:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.