Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation
- URL: http://arxiv.org/abs/2005.08249v2
- Date: Fri, 19 Feb 2021 07:15:15 GMT
- Title: Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation
- Authors: C. Navarrete-Benlloch, R. Garc\'es, N. Mohseni, and G. J. de
Valc\'arcel
- Abstract summary: We propose a method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems.
We show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open quantum systems can display periodic dynamics at the classical level
either due to external periodic modulations or to self-pulsing phenomena
typically following a Hopf bifurcation. In both cases, the quantum fluctuations
around classical solutions do not reach a quantum-statistical stationary state,
which prevents adopting the simple and reliable methods used for stationary
quantum systems. Here we put forward a general and efficient method to compute
two-time correlations and corresponding spectral densities of time-periodic
open quantum systems within the usual linearized (Gaussian) approximation for
their dynamics. Using Floquet theory we show how the quantum Langevin equations
for the fluctuations can be efficiently integrated by partitioning the time
domain into one-period duration intervals, and relating the properties of each
period to the first one. Spectral densities, like squeezing spectra, are
computed similarly, now in a two-dimensional temporal domain that is treated as
a chessboard with one-period x one-period cells. This technique avoids
cumulative numerical errors as well as efficiently saves computational time. As
an illustration of the method, we analyze the quantum fluctuations of a damped
parametrically-driven oscillator (degenerate parametric oscillator) below
threshold and far away from rotating-wave approximation conditions, which is a
relevant scenario for modern low-frequency quantum oscillators. Our method
reveals that the squeezing properties of such devices are quite robust against
the amplitude of the modulation or the low quality of the oscillator, although
optimal squeezing can appear for parameters that are far from the ones
predicted within the rotating-wave approximation.
Related papers
- Optimization of partially isolated quantum harmonic oscillator memory systems by mean square decoherence time criteria [0.6138671548064356]
Heisenberg picture quantum memories exploit their ability to retain initial conditions over a decoherence horizon.
Using the quantum memoryherence time defined previously in terms of a fidelity threshold on a weighted mean-square deviation of the system variables, we apply this approach to a partially isolated subsystem.
arXiv Detail & Related papers (2024-09-24T04:10:27Z) - Shortcuts to adiabaticity in harmonic traps: a quantum-classical analog [0.10713888959520208]
We present a new technique for efficiently transitioning a quantum system from an initial to a final stationary state.
Our approach makes use of Nelson's quantization, which represents the quantum system as a classical Brownian process.
arXiv Detail & Related papers (2024-05-03T09:19:24Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - Quantum computing Floquet energy spectra [0.0]
We present two quantum algorithms to determine effective Floquet modes and energy spectra.
We combine the defining properties of Floquet modes in time and frequency domains with the expressiveness of parametrized quantum circuits to overcome the limitations of classical approaches.
arXiv Detail & Related papers (2021-12-08T13:27:42Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.