AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection
- URL: http://arxiv.org/abs/2103.11800v1
- Date: Sun, 14 Mar 2021 16:17:26 GMT
- Title: AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection
- Authors: Md Rabiul Awal, Rui Cao, Roy Ka-Wei Lee, Sandra Mitrovic
- Abstract summary: This paper proposes a novel multitask learning-based model, AngryBERT, which jointly learns hate speech detection with sentiment classification and target identification as secondary relevant tasks.
Experiment results show that AngryBERT outperforms state-of-the-art single-task-learning and multitask learning baselines.
- Score: 5.649040805759824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated hate speech detection in social media is a challenging task that
has recently gained significant traction in the data mining and Natural
Language Processing community. However, most of the existing methods adopt a
supervised approach that depended heavily on the annotated hate speech
datasets, which are imbalanced and often lack training samples for hateful
content. This paper addresses the research gaps by proposing a novel multitask
learning-based model, AngryBERT, which jointly learns hate speech detection
with sentiment classification and target identification as secondary relevant
tasks. We conduct extensive experiments to augment three commonly-used hate
speech detection datasets. Our experiment results show that AngryBERT
outperforms state-of-the-art single-task-learning and multitask learning
baselines. We conduct ablation studies and case studies to empirically examine
the strengths and characteristics of our AngryBERT model and show that the
secondary tasks are able to improve hate speech detection.
Related papers
- Bridging Modalities: Enhancing Cross-Modality Hate Speech Detection with Few-Shot In-Context Learning [4.136573141724715]
Hate speech on the internet poses a significant challenge to digital platform safety.
Recent research has developed detection models tailored to specific modalities.
This study conducts extensive experiments using few-shot in-context learning with large language models.
arXiv Detail & Related papers (2024-10-08T01:27:12Z) - ARC-NLP at Multimodal Hate Speech Event Detection 2023: Multimodal
Methods Boosted by Ensemble Learning, Syntactical and Entity Features [1.3190581566723918]
In the Russia-Ukraine war, both opposing factions heavily relied on text-embedded images as a vehicle for spreading propaganda and hate speech.
In this paper, we outline our methodologies for two subtasks of Multimodal Hate Speech Event Detection 2023.
For the first subtask, hate speech detection, we utilize multimodal deep learning models boosted by ensemble learning and syntactical text attributes.
For the second subtask, target detection, we employ multimodal deep learning models boosted by named entity features.
arXiv Detail & Related papers (2023-07-25T21:56:14Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
We propose a novel dual contrastive learning framework for hate speech detection.
Our framework jointly optimize the self-supervised and the supervised contrastive learning loss for capturing span-level information.
We conduct experiments on two publicly available English datasets, and experimental results show that the proposed model outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-07-10T13:23:36Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community.
There are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers.
Recent work has begun to introduce such benchmark for several tasks.
arXiv Detail & Related papers (2022-12-20T18:39:59Z) - ToKen: Task Decomposition and Knowledge Infusion for Few-Shot Hate
Speech Detection [85.68684067031909]
We frame this problem as a few-shot learning task, and show significant gains with decomposing the task into its "constituent" parts.
In addition, we see that infusing knowledge from reasoning datasets (e.g. Atomic 2020) improves the performance even further.
arXiv Detail & Related papers (2022-05-25T05:10:08Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
We propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework.
We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts.
arXiv Detail & Related papers (2022-04-14T15:03:35Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
We make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries.
The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries.
arXiv Detail & Related papers (2021-11-08T08:44:04Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
This paper investigates the feasibility of leveraging domain-specific word embedding in Bidirectional LSTM based deep model to automatically detect/classify hate speech.
The experiments showed that domainspecific word embedding with the Bidirectional LSTM based deep model achieved a 93% f1-score while BERT achieved up to 96% f1-score on a combined balanced dataset from available hate speech datasets.
arXiv Detail & Related papers (2021-11-02T11:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.