Deep RGB-D Saliency Detection with Depth-Sensitive Attention and
Automatic Multi-Modal Fusion
- URL: http://arxiv.org/abs/2103.11832v1
- Date: Mon, 22 Mar 2021 13:28:45 GMT
- Title: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and
Automatic Multi-Modal Fusion
- Authors: Peng Sun, Wenhu Zhang, Huanyu Wang, Songyuan Li, Xi Li
- Abstract summary: RGB-D salient object detection (SOD) is usually formulated as a problem of classification or regression over two modalities, i.e., RGB and depth.
We propose a depth-sensitive RGB feature modeling scheme using the depth-wise geometric prior of salient objects.
Experiments on seven standard benchmarks demonstrate the effectiveness of the proposed approach against the state-of-the-art.
- Score: 15.033234579900657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-D salient object detection (SOD) is usually formulated as a problem of
classification or regression over two modalities, i.e., RGB and depth. Hence,
effective RGBD feature modeling and multi-modal feature fusion both play a
vital role in RGB-D SOD. In this paper, we propose a depth-sensitive RGB
feature modeling scheme using the depth-wise geometric prior of salient
objects. In principle, the feature modeling scheme is carried out in a
depth-sensitive attention module, which leads to the RGB feature enhancement as
well as the background distraction reduction by capturing the depth geometry
prior. Moreover, to perform effective multi-modal feature fusion, we further
present an automatic architecture search approach for RGB-D SOD, which does
well in finding out a feasible architecture from our specially designed
multi-modal multi-scale search space. Extensive experiments on seven standard
benchmarks demonstrate the effectiveness of the proposed approach against the
state-of-the-art.
Related papers
- RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
We propose a real-time and two stream RGBD object detection model.
The proposed model consists of two new components: a depth guided hyper-involution that adapts dynamically based on the spatial interaction pattern in the raw depth map and an up-sampling based trainable fusion layer.
We show that the proposed model outperforms other RGB-D based object detection models on NYU Depth v2 dataset and achieves comparable (second best) results on SUN RGB-D.
arXiv Detail & Related papers (2023-09-30T11:25:34Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - RGB-D Grasp Detection via Depth Guided Learning with Cross-modal
Attention [14.790193023912973]
This paper proposes a novel learning based approach to RGB-D grasp detection, namely Depth Guided Cross-modal Attention Network (DGCAN)
To better leverage the geometry information recorded in the depth channel, a complete 6-dimensional rectangle representation is adopted with the grasp depth dedicatedly considered.
The prediction of the extra grasp depth substantially strengthens feature learning, thereby leading to more accurate results.
arXiv Detail & Related papers (2023-02-28T02:41:27Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-10-06T11:59:19Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Multi-Scale Iterative Refinement Network for RGB-D Salient Object
Detection [7.062058947498447]
salient visual cues appear in various scales and resolutions of RGB images due to semantic gaps at different feature levels.
Similar salient patterns are available in cross-modal depth images as well as multi-scale versions.
We devise attention based fusion module (ABF) to address on cross-modal correlation.
arXiv Detail & Related papers (2022-01-24T10:33:00Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
We propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD.
Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion.
CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
arXiv Detail & Related papers (2020-07-09T16:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.