RGB-Thermal Infrared Fusion for Robust Depth Estimation in Complex Environments
- URL: http://arxiv.org/abs/2503.04821v2
- Date: Tue, 29 Apr 2025 02:46:20 GMT
- Title: RGB-Thermal Infrared Fusion for Robust Depth Estimation in Complex Environments
- Authors: Zelin Meng, Takanori Fukao,
- Abstract summary: This paper proposes a novel multimodal depth estimation model, RTFusion, which enhances depth estimation accuracy and robustness.<n>The model incorporates a unique fusion mechanism, EGFusion, consisting of the Mutual Complementary Attention (MCA) module for cross-modal feature alignment.<n>Experiments on the MS2 and ViViD++ datasets demonstrate that the proposed model consistently produces high-quality depth maps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation in complex real-world scenarios is a challenging task, especially when relying solely on a single modality such as visible light or thermal infrared (THR) imagery. This paper proposes a novel multimodal depth estimation model, RTFusion, which enhances depth estimation accuracy and robustness by integrating the complementary strengths of RGB and THR data. The RGB modality provides rich texture and color information, while the THR modality captures thermal patterns, ensuring stability under adverse lighting conditions such as extreme illumination. The model incorporates a unique fusion mechanism, EGFusion, consisting of the Mutual Complementary Attention (MCA) module for cross-modal feature alignment and the Edge Saliency Enhancement Module (ESEM) to improve edge detail preservation. Comprehensive experiments on the MS2 and ViViD++ datasets demonstrate that the proposed model consistently produces high-quality depth maps across various challenging environments, including nighttime, rainy, and high-glare conditions. The experimental results highlight the potential of the proposed method in applications requiring reliable depth estimation, such as autonomous driving, robotics, and augmented reality.
Related papers
- Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
We propose a novel framework incorporating stereo depth estimation to enforce accurate geometric constraints.
To mitigate the effects of poor lighting on stereo matching, we introduce Degradation Masking.
Our method achieves state-of-the-art (SOTA) performance on the Multi-Spectral Stereo (MS2) dataset.
arXiv Detail & Related papers (2024-11-06T03:30:46Z) - Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis [48.59382455101753]
2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose.
Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth information.
In this work, we first construct a diverse depth dataset generated by 3D Morphable Models for depth model pre-training.
Then, we propose a domain-independent pre-training framework that utilizes readily available pre-trained RGB and depth models to separately perform face recognition without needing additional paired data for retraining.
arXiv Detail & Related papers (2024-03-11T09:12:24Z) - Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging
Scenarios [103.72094710263656]
This paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework.
We propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas.
With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner.
arXiv Detail & Related papers (2024-02-19T04:39:16Z) - Ternary-Type Opacity and Hybrid Odometry for RGB NeRF-SLAM [58.736472371951955]
We introduce a ternary-type opacity (TT) model, which categorizes points on a ray intersecting a surface into three regions: before, on, and behind the surface.
This enables a more accurate rendering of depth, subsequently improving the performance of image warping techniques.
Our integrated approach of TT and HO achieves state-of-the-art performance on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-20T18:03:17Z) - RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
We propose a real-time and two stream RGBD object detection model.
The proposed model consists of two new components: a depth guided hyper-involution that adapts dynamically based on the spatial interaction pattern in the raw depth map and an up-sampling based trainable fusion layer.
We show that the proposed model outperforms other RGB-D based object detection models on NYU Depth v2 dataset and achieves comparable (second best) results on SUN RGB-D.
arXiv Detail & Related papers (2023-09-30T11:25:34Z) - Attentive Multimodal Fusion for Optical and Scene Flow [24.08052492109655]
Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
arXiv Detail & Related papers (2023-07-28T04:36:07Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
Real-time estimation of actual environment depth is an essential module for various autonomous system tasks.
In this study, latest advancements in the field of generative neural networks are leveraged to fully unsupervised single-image depth synthesis.
arXiv Detail & Related papers (2021-03-31T09:43:38Z) - Deep RGB-D Saliency Detection with Depth-Sensitive Attention and
Automatic Multi-Modal Fusion [15.033234579900657]
RGB-D salient object detection (SOD) is usually formulated as a problem of classification or regression over two modalities, i.e., RGB and depth.
We propose a depth-sensitive RGB feature modeling scheme using the depth-wise geometric prior of salient objects.
Experiments on seven standard benchmarks demonstrate the effectiveness of the proposed approach against the state-of-the-art.
arXiv Detail & Related papers (2021-03-22T13:28:45Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
How to effectively fuse cross-modal information is the key problem for RGB-D salient object detection.
Many models use the feature fusion strategy but are limited by the low-order point-to-point fusion methods.
We propose a novel mutual attention model by fusing attention and contexts from different modalities.
arXiv Detail & Related papers (2020-10-12T08:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.