A Federated Learning Framework in Smart Grid: Securing Power Traces in
Collaborative Learning
- URL: http://arxiv.org/abs/2103.11870v1
- Date: Mon, 22 Mar 2021 14:06:21 GMT
- Title: A Federated Learning Framework in Smart Grid: Securing Power Traces in
Collaborative Learning
- Authors: Haizhou Liu, Xuan Zhang, Hongbin Sun
- Abstract summary: We propose a federated learning framework in smart grid, which enables collaborative machine learning of power consumption patterns without leaking individual power traces.
Case studies show that, with proper encryption schemes such as Paillier, the machine learning models constructed from the proposed framework are lossless, privacy-preserving and effective.
- Score: 7.246377480492976
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the deployment of smart sensors and advancements in communication
technologies, big data analytics have become vastly popular in the smart grid
domain, which inform stakeholders of the best power utilization strategy.
However, these power-related data are typically scattered among different
parties. Direct data sharing might compromise party benefits, individual
privacy and even national security. Inspired by the federated learning scheme
of Google AI, we hereby propose a federated learning framework in smart grid,
which enables collaborative machine learning of power consumption patterns
without leaking individual power traces. Horizontal federated learning is
employed when data are scattered in the sample space; vertical federated
learning, on the other hand, is designed for data scattered in the feature
space. Case studies show that, with proper encryption schemes such as Paillier,
the machine learning models constructed from the proposed framework are
lossless, privacy-preserving and effective.
Related papers
- Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
The rise of Artificial Intelligence has revolutionized numerous industries and transformed the way society operates.
It is crucial to utilize information in learning processes that are either distributed or owned by different entities.
Modern data-driven services have been developed to integrate distributed knowledge entities into their outcomes.
arXiv Detail & Related papers (2024-02-08T07:18:23Z) - An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms [2.994794762377111]
In today's world, the rapid expansion of IoT networks and the proliferation of smart devices have resulted in the generation of substantial amounts of heterogeneous data.
To handle this data effectively, advanced data processing technologies are necessary to guarantee the preservation of both privacy and efficiency.
Federated learning emerged as a distributed learning method that trains models locally and aggregates them on a server to preserve data privacy.
arXiv Detail & Related papers (2023-12-24T00:13:41Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
We present an end-to-end graph representation learning framework called VESPER.
VESPER is capable of training high-performance GNN models over both sparse and dense graphs under reasonable privacy budgets.
arXiv Detail & Related papers (2023-10-31T15:34:59Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
Federated learning emerges as an efficient approach to exploit distributed data and computing resources.
We propose a functional architecture of federated learning systems and a taxonomy of related techniques.
We present the distributed training, data communication, and security of FL systems.
arXiv Detail & Related papers (2021-04-29T14:15:11Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems [15.796325306292134]
Federated learning (FL) enables collaborative training of a shared model on edge devices while maintaining data privacy.
Various personalized approaches have been proposed, but such approaches fail to handle underlying shifts in data distribution.
This paper presents a dynamically optimized personal deep learning scheme based on blockchain and federated learning.
arXiv Detail & Related papers (2021-03-12T02:57:05Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
Federated learning is capable of analyzing the large amount of data from a distributed set of smart devices without requiring them to upload their data to a central place.
This paper proposes a novel federated learning framework called DP-PASGD for training a machine learning model efficiently from the data stored across resource-constrained smart devices in IoT.
arXiv Detail & Related papers (2020-03-28T04:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.