論文の概要: Linear Constraints Learning for Spiking Neurons
- arxiv url: http://arxiv.org/abs/2103.12564v1
- Date: Wed, 10 Mar 2021 13:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 04:07:16.520846
- Title: Linear Constraints Learning for Spiking Neurons
- Title(参考訳): スパイキングニューロンに対する線形制約学習
- Authors: Huy Le Nguyen, Dominique Chu
- Abstract要約: 本研究では,学習回数を削減した教師付きマルチスパイク学習アルゴリズムを提案する。
実験の結果,本手法はMNISTデータセット上の既存のアルゴリズムと比較して効率が良いことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Encoding information with precise spike timings using spike-coded neurons has
been shown to be more computationally powerful than rate-coded approaches.
However, most existing supervised learning algorithms for spiking neurons are
complicated and offer poor time complexity. To address these limitations, we
propose a supervised multi-spike learning algorithm which reduces the required
number of training iterations. We achieve this by formulating a large number of
weight updates as a linear constraint satisfaction problem, which can be solved
efficiently. Experimental results show this method offers better efficiency
compared to existing algorithms on the MNIST dataset. Additionally, we provide
experimental results on the classification capacity of the LIF neuron model,
relative to several parameters of the system.
- Abstract(参考訳): スパイク符号化ニューロンを用いて正確なスパイクタイミングで情報をエンコーディングすることは、レート符号化アプローチよりも計算能力が高いことが示されている。
しかし、スパイクニューロンに対する既存の教師あり学習アルゴリズムは複雑であり、時間の複雑さをもたらす。
これらの制限に対処するために,教師付きマルチスパイク学習アルゴリズムを提案する。
本研究では,線形制約満足度問題として大量の重み付け更新を定式化し,効率的に解くことができる。
実験の結果,本手法はMNISTデータセット上の既存のアルゴリズムと比較して効率が良いことがわかった。
さらに, LIFニューロンモデルの分類能力について, システムのいくつかのパラメータと比較して実験を行った。
関連論文リスト
- Erasure Coded Neural Network Inference via Fisher Averaging [28.243239815823205]
消去符号化コンピューティングは、サーバのストラグリングや異種トラフィックの変動といった要因によって引き起こされるテールレイテンシを低減するために、クラウドシステムで成功している。
我々は、2つ以上のニューラルネットワークモデルに対して、与えられたニューラルネットワークの出力の線形結合である符号付きモデルを構築する方法を設計する。
実世界のビジョンデータセットに基づいてトレーニングされたニューラルネットワーク上で消去符号化を行う実験を行い、COINを用いた復号出力の精度は他のベースラインよりも著しく高いことを示す。
論文 参考訳(メタデータ) (2024-09-02T18:46:26Z) - Stepwise Weighted Spike Coding for Deep Spiking Neural Networks [7.524721345903027]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのスパイキング動作を模倣しようと試みている。
本稿では,スパイクにおける情報のエンコーディングを強化するために,SWS(Stepwise Weighted Spike)符号化方式を提案する。
このアプローチは、ニューラルネットワークの各ステップにおけるスパイクの重要性を重み付け、高い性能と低エネルギー消費を達成することでスパイクを圧縮する。
論文 参考訳(メタデータ) (2024-08-30T12:39:25Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - Emulation Learning for Neuromimetic Systems [0.0]
ニューラル量子化システムに関する最近の研究に基づいて、量子化運動の学習結果とチャネルドロップアウトに対するレジリエンスを報告する。
本稿では,経路を学習するだけでなく,チャネルドロップアウトに対するレジリエンスの利点を示す一般のディープQネットワーク(DQN)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-04T22:47:39Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
アクティベーション・リラクシエーション(AR)アルゴリズムは、誤りアルゴリズムのバックプロパゲーションを近似するためのシンプルでロバストなアプローチを提供する。
このアルゴリズムは、学習可能な後方重みセットを導入することにより、さらに単純化され、生物学的に検証可能であることを示す。
また、元のARアルゴリズム(凍結フィードフォワードパス)の別の生物学的に信じられない仮定が、パフォーマンスを損なうことなく緩和できるかどうかについても検討する。
論文 参考訳(メタデータ) (2020-10-13T08:02:38Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。