論文の概要: Erasure Coded Neural Network Inference via Fisher Averaging
- arxiv url: http://arxiv.org/abs/2409.01420v1
- Date: Mon, 2 Sep 2024 18:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 04:02:22.072347
- Title: Erasure Coded Neural Network Inference via Fisher Averaging
- Title(参考訳): 漁獲量平均化による消去符号化ニューラルネットワーク推論
- Authors: Divyansh Jhunjhunwala, Neharika Jali, Gauri Joshi, Shiqiang Wang,
- Abstract要約: 消去符号化コンピューティングは、サーバのストラグリングや異種トラフィックの変動といった要因によって引き起こされるテールレイテンシを低減するために、クラウドシステムで成功している。
我々は、2つ以上のニューラルネットワークモデルに対して、与えられたニューラルネットワークの出力の線形結合である符号付きモデルを構築する方法を設計する。
実世界のビジョンデータセットに基づいてトレーニングされたニューラルネットワーク上で消去符号化を行う実験を行い、COINを用いた復号出力の精度は他のベースラインよりも著しく高いことを示す。
- 参考スコア(独自算出の注目度): 28.243239815823205
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Erasure-coded computing has been successfully used in cloud systems to reduce tail latency caused by factors such as straggling servers and heterogeneous traffic variations. A majority of cloud computing traffic now consists of inference on neural networks on shared resources where the response time of inference queries is also adversely affected by the same factors. However, current erasure coding techniques are largely focused on linear computations such as matrix-vector and matrix-matrix multiplications and hence do not work for the highly non-linear neural network functions. In this paper, we seek to design a method to code over neural networks, that is, given two or more neural network models, how to construct a coded model whose output is a linear combination of the outputs of the given neural networks. We formulate the problem as a KL barycenter problem and propose a practical algorithm COIN that leverages the diagonal Fisher information to create a coded model that approximately outputs the desired linear combination of outputs. We conduct experiments to perform erasure coding over neural networks trained on real-world vision datasets and show that the accuracy of the decoded outputs using COIN is significantly higher than other baselines while being extremely compute-efficient.
- Abstract(参考訳): 消去符号化コンピューティングは、サーバのストラグリングや異種トラフィックの変動といった要因によって引き起こされるテールレイテンシを低減するために、クラウドシステムで成功している。
クラウドコンピューティングのトラフィックの大部分は、推論クエリの応答時間が同じ要因によって悪影響を受ける共有リソース上のニューラルネットワーク上の推論で構成されている。
しかし、現在の消去符号化技術は主に行列ベクトルや行列行列行列の乗算のような線形計算に重点を置いているため、高非線形ニューラルネットワーク関数では機能しない。
本論文では、2つ以上のニューラルネットワークモデルが与えられた場合、与えられたニューラルネットワークの出力の線形結合である符号付きモデルを構築する方法を提案する。
我々は,この問題をKLバリセンタ問題として定式化し,対角的なフィッシャー情報を活用する実用的なアルゴリズムCOINを提案し,出力の線形結合を概略出力する符号化モデルを作成する。
実世界のビジョンデータセットに基づいてトレーニングされたニューラルネットワーク上で消去符号化を行う実験を行い、COINを用いた復号出力の精度が、計算効率が極めて高いとともに、他のベースラインよりも著しく高いことを示す。
関連論文リスト
- Residual Random Neural Networks [0.0]
ランダムな重みを持つ単層フィードフォワードニューラルネットワークは、ニューラルネットワークの文献の中で繰り返されるモチーフである。
隠れたニューロンの数がデータサンプルの次元と等しくない場合でも,優れた分類結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:00:11Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
深層畳み込みニューラルネットワークは、様々なコンピュータビジョンタスクにおいて前例のない性能を達成した。
本稿では、ReLUアクティベーションを持つニューラルネットワークのスパース符号化解釈を提案する。
正規化やプーリングなしに完全な畳み込みニューラルネットワークを導出する。
論文 参考訳(メタデータ) (2021-08-14T21:54:47Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
ディープニューラルネットワークは、画像や言語認識など、多くの予測モデリングタスクで成功している。
モバイルデバイスのような限られた計算資源の下でこれらのネットワークをデプロイすることは困難である。
生成した出力を変更せずに、ニューラルネットワークの単位と層を除去するアルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-01T15:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。