論文の概要: Emulation Learning for Neuromimetic Systems
- arxiv url: http://arxiv.org/abs/2305.03196v1
- Date: Thu, 4 May 2023 22:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 15:57:22.143517
- Title: Emulation Learning for Neuromimetic Systems
- Title(参考訳): 神経運動系のエミュレーション学習
- Authors: Zexin Sun, John Baillieul
- Abstract要約: ニューラル量子化システムに関する最近の研究に基づいて、量子化運動の学習結果とチャネルドロップアウトに対するレジリエンスを報告する。
本稿では,経路を学習するだけでなく,チャネルドロップアウトに対するレジリエンスの利点を示す一般のディープQネットワーク(DQN)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Building on our recent research on neural heuristic quantization systems,
results on learning quantized motions and resilience to channel dropouts are
reported. We propose a general emulation problem consistent with the
neuromimetic paradigm. This optimal quantization problem can be solved by model
predictive control (MPC), but because the optimization step involves integer
programming, the approach suffers from combinatorial complexity when the number
of input channels becomes large. Even if we collect data points to train a
neural network simultaneously, collection of training data and the training
itself are still time-consuming. Therefore, we propose a general Deep Q Network
(DQN) algorithm that can not only learn the trajectory but also exhibit the
advantages of resilience to channel dropout. Furthermore, to transfer the model
to other emulation problems, a mapping-based transfer learning approach can be
used directly on the current model to obtain the optimal direction for the new
emulation problems.
- Abstract(参考訳): ニューラルヒューリスティック量子化システムに関する最近の研究に基づいて、量子化運動の学習結果とチャネルドロップアウトに対するレジリエンスを報告する。
ニューロミメティックパラダイムに準拠した一般的なエミュレーション問題を提案する。
この最適量子化問題はモデル予測制御(MPC)によって解決できるが、最適化ステップは整数プログラミングを伴うため、入力チャネルの数が大きくなると組合せ複雑性に悩まされる。
同時にニューラルネットワークをトレーニングするためにデータポイントを収集しても、トレーニングデータとトレーニング自体の収集には時間がかかる。
そこで本研究では,経路を学習するだけでなく,チャネルドロップアウトに対するレジリエンスの利点を示す一般のディープQネットワーク(DQN)アルゴリズムを提案する。
さらに、モデルを他のエミュレーション問題に転送するために、マッピングベースの転送学習アプローチを現在のモデルに直接使用して、新しいエミュレーション問題の最適方向を求めることができる。
関連論文リスト
- GreenLightningAI: An Efficient AI System with Decoupled Structural and
Quantitative Knowledge [0.0]
強力な、人気のあるディープニューラルネットワークのトレーニングには、非常に高い経済的および環境的コストが伴う。
この作業は、GreenLightningAIを提案することによって、根本的に異なるアプローチを取る。
新しいAIシステムは、所定のサンプルに対してシステムサブセットを選択するために必要な情報を格納する。
我々は,AIシステムを新しいサンプルで再学習する際に,構造情報を無修正で保持できることを実験的に示す。
論文 参考訳(メタデータ) (2023-12-15T17:34:11Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
新しいタイプのニューラルネットワークは、高速ニューラルネットワークパラダイムを用いて提示される。
提案したエミュレータを組み込んだニューラルネットワークは,予測精度を損なうことなく,ほぼ瞬時に学習できることが判明した。
論文 参考訳(メタデータ) (2023-09-12T22:34:34Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Linear Constraints Learning for Spiking Neurons [0.0]
本研究では,学習回数を削減した教師付きマルチスパイク学習アルゴリズムを提案する。
実験の結果,本手法はMNISTデータセット上の既存のアルゴリズムと比較して効率が良いことがわかった。
論文 参考訳(メタデータ) (2021-03-10T13:54:05Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。