A Multi-parameter Persistence Framework for Mathematical Morphology
- URL: http://arxiv.org/abs/2103.13013v1
- Date: Wed, 24 Mar 2021 06:46:00 GMT
- Title: A Multi-parameter Persistence Framework for Mathematical Morphology
- Authors: Yu-Min Chung, Sarah Day, Chuan-Shen Hu
- Abstract summary: We look at morphological operations through the lens of persistent homology.
persistent homology is a tool at the heart of the field of topological data analysis.
- Score: 2.1485350418225244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The field of mathematical morphology offers well-studied techniques for image
processing. In this work, we view morphological operations through the lens of
persistent homology, a tool at the heart of the field of topological data
analysis. We demonstrate that morphological operations naturally form a
multiparameter filtration and that persistent homology can then be used to
extract information about both topology and geometry in the images as well as
to automate methods for optimizing the study and rendering of structure in
images. For illustration, we apply this framework to analyze noisy binary,
grayscale, and color images.
Related papers
- Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras [49.81327385913137]
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles.
This workleverages quaternions and the two-dimensional planes split framework (splitting of a quaternion - representing a pixel - into pairs of 2D planes) for natural/biomedical image analysis.
The proposed can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines.
arXiv Detail & Related papers (2025-02-11T18:38:02Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Curved Diffusion: A Generative Model With Optical Geometry Control [56.24220665691974]
The influence of different optical systems on the final scene appearance is frequently overlooked.
This study introduces a framework that intimately integrates a textto-image diffusion model with the particular lens used in image rendering.
arXiv Detail & Related papers (2023-11-29T13:06:48Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Kartezio: Evolutionary Design of Explainable Pipelines for Biomedical
Image Analysis [0.0]
We introduce Kartezio, a computational strategy that generates transparent and easily interpretable image processing pipelines.
The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks.
We also deployed Kartezio to solve semantic and instance segmentation problems in four real-world Use Cases.
arXiv Detail & Related papers (2023-02-28T17:02:35Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
We introduce a scalable generative model, coined as DEPAS, that captures tissue structure and generates high-resolution semantic masks with state-of-the-art quality.
We demonstrate the ability of DEPAS to generate realistic semantic maps of tissue for three types of organs: skin, prostate, and lung.
arXiv Detail & Related papers (2023-02-13T16:48:33Z) - Dynamic multi feature-class Gaussian process models [0.0]
This study presents a statistical modelling method for automatic learning of shape, pose and intensity features in medical images.
A DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variation.
The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications.
arXiv Detail & Related papers (2021-12-08T15:12:47Z) - Large Deformation Diffeomorphic Image Registration with Laplacian
Pyramid Networks [11.4219428942199]
We propose a deep Laplacian Pyramid Image Registration Network to solve the image registration optimization problem.
Our method outperforms the existing methods by a significant margin while maintaining desirable diffeomorphic properties and promising registration speed.
arXiv Detail & Related papers (2020-06-29T16:10:40Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.