Single-shot Tomography of Discrete Dynamic Objects
- URL: http://arxiv.org/abs/2311.05269v1
- Date: Thu, 9 Nov 2023 10:52:02 GMT
- Title: Single-shot Tomography of Discrete Dynamic Objects
- Authors: Ajinkya Kadu, Felix Lucka, Kees Joost Batenburg
- Abstract summary: We present a novel method for the reconstruction of high-resolution temporal images in dynamic tomographic imaging.
The implications of this research extend to improved visualization and analysis of dynamic processes in tomographic imaging.
- Score: 1.1407697960152927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel method for the reconstruction of high-resolution
temporal images in dynamic tomographic imaging, particularly for discrete
objects with smooth boundaries that vary over time. Addressing the challenge of
limited measurements per time point, we propose a technique that
synergistically incorporates spatial and temporal information of the dynamic
objects. This is achieved through the application of the level-set method for
image segmentation and the representation of motion via a sinusoidal basis. The
result is a computationally efficient and easily optimizable variational
framework that enables the reconstruction of high-quality 2D or 3D image
sequences with a single projection per frame. Compared to current methods, our
proposed approach demonstrates superior performance on both synthetic and
pseudo-dynamic real X-ray tomography datasets. The implications of this
research extend to improved visualization and analysis of dynamic processes in
tomographic imaging, finding potential applications in diverse scientific and
industrial domains.
Related papers
- Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning [0.0]
Digital Twins technology is revolutionizing decision-making in scientific research by integrating models and simulations with real-time data.
This research proposes a novel approach using Artificial Intelligence.
Convolutional Neural Networks are employed to analyze structural behaviors in real-time by correlating Digital Image Correlation speckle pattern images with deformation fields.
arXiv Detail & Related papers (2024-10-07T18:10:12Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - CPT-Interp: Continuous sPatial and Temporal Motion Modeling for 4D Medical Image Interpolation [22.886841531680567]
Motion information from 4D medical imaging offers critical insights into dynamic changes in patient anatomy for clinical assessments and radiotherapy planning.
However, inherent physical and technical constraints of imaging hardware often necessitate a compromise between temporal resolution and image quality.
We propose a novel approach for continuously modeling patient anatomic motion using implicit neural representation.
arXiv Detail & Related papers (2024-05-24T09:35:42Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos.
We first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique.
We distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields.
arXiv Detail & Related papers (2024-01-10T23:26:41Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - Robust Dynamic Radiance Fields [79.43526586134163]
Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene.
Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms.
We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters.
arXiv Detail & Related papers (2023-01-05T18:59:51Z) - Motion-aware Dynamic Graph Neural Network for Video Compressive Sensing [14.67994875448175]
Video snapshot imaging (SCI) utilizes a 2D detector to capture sequential video frames and compress them into a single measurement.
Most existing reconstruction methods are incapable of efficiently capturing long-range spatial and temporal dependencies.
We propose a flexible and robust approach based on the graph neural network (GNN) to efficiently model non-local interactions between pixels in space and time regardless of the distance.
arXiv Detail & Related papers (2022-03-01T12:13:46Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Learning a Generative Motion Model from Image Sequences based on a
Latent Motion Matrix [8.774604259603302]
We learn a probabilistic motion model from simulating temporal-temporal registration in a sequence of images.
We show improved registration accuracy-temporally smoother consistencys compared to three state-of-the-art registration algorithms.
We also demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames.
arXiv Detail & Related papers (2020-11-03T14:44:09Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.