Object Localization Through a Single Multiple-Model Convolutional Neural
Network with a Specific Training Approach
- URL: http://arxiv.org/abs/2103.13339v1
- Date: Wed, 24 Mar 2021 16:52:01 GMT
- Title: Object Localization Through a Single Multiple-Model Convolutional Neural
Network with a Specific Training Approach
- Authors: Faraz Lotfi, Farnoosh Faraji, Hamid D. Taghirad
- Abstract summary: A special training approach is proposed for a light convolutional neural network (CNN) to determine the region of interest in an image.
Almost all CNN-based detectors utilize a fixed input size image, which may yield poor performance when dealing with various object sizes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object localization has a vital role in any object detector, and therefore,
has been the focus of attention by many researchers. In this article, a special
training approach is proposed for a light convolutional neural network (CNN) to
determine the region of interest (ROI) in an image while effectively reducing
the number of probable anchor boxes. Almost all CNN-based detectors utilize a
fixed input size image, which may yield poor performance when dealing with
various object sizes. In this paper, a different CNN structure is proposed
taking three different input sizes, to enhance the performance. In order to
demonstrate the effectiveness of the proposed method, two common data set are
used for training while tracking by localization application is considered to
demonstrate its final performance. The promising results indicate the
applicability of the presented structure and the training method in practice.
Related papers
- Proposal-Contrastive Pretraining for Object Detection from Fewer Data [11.416621957617334]
We present Proposal Selection Contrast (ProSeCo), a novel unsupervised overall pretraining approach.
ProSeCo uses the large number of object proposals generated by the detector for contrastive learning.
We show that our method outperforms state of the art in unsupervised pretraining for object detection on standard and novel benchmarks.
arXiv Detail & Related papers (2023-10-25T17:59:26Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Network Comparison Study of Deep Activation Feature Discriminability
with Novel Objects [0.5076419064097732]
State-of-the-art computer visions algorithms have incorporated Deep Neural Networks (DNN) in feature extracting roles, creating Deep Convolutional Activation Features (DeCAF)
This study analyzes the general discriminability of novel object visual appearances encoded into the DeCAF space of six of the leading visual recognition DNN architectures.
arXiv Detail & Related papers (2022-02-08T07:40:53Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
The performance of our method is assessed on DOTA, a large-scale remote sensing images dataset.
It highlights in particular some intrinsic weaknesses for the few-shot object detection task.
arXiv Detail & Related papers (2021-09-27T13:04:53Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
arXiv Detail & Related papers (2021-06-04T17:59:52Z) - Learning Collision-Free Space Detection from Stereo Images: Homography
Matrix Brings Better Data Augmentation [16.99302954185652]
It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples.
This paper explores an effective training data augmentation approach that can be employed to improve the overall DCNN performance.
arXiv Detail & Related papers (2020-12-14T19:14:35Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - Extended Target Tracking and Classification Using Neural Networks [1.2891210250935146]
State-of-the-art ETT algorithms can track the dynamic behaviour of objects and learn their shapes simultaneously.
We propose to use a naively deep neural network, which consists of one input, two hidden and one output layers, to classify dynamic objects regarding their shape estimates.
arXiv Detail & Related papers (2020-02-13T12:02:52Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.