論文の概要: Term-community-based topic detection with variable resolution
- arxiv url: http://arxiv.org/abs/2103.13550v1
- Date: Thu, 25 Mar 2021 01:29:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:43:14.584209
- Title: Term-community-based topic detection with variable resolution
- Title(参考訳): 可変分解能を用いた用語コミュニティに基づく話題検出
- Authors: Andreas Hamm and Simon Odrowski (German Aerospace Center DLR)
- Abstract要約: 巨大なテキストコレクションにおけるトピック検出のためのネットワークベースの手順は、確率的トピックモデルの直感的な代替手段を提供する。
ドメインの専門家の要求を念頭に置いて特別に設計された手法を紹介します。
本手法の適用を一般ニュース記事のコーパスで実証し,詳細な社会科学専門家評価の結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Network-based procedures for topic detection in huge text collections offer
an intuitive alternative to probabilistic topic models. We present in detail a
method that is especially designed with the requirements of domain experts in
mind. Like similar methods, it employs community detection in term
co-occurrence graphs, but it is enhanced by including a resolution parameter
that can be used for changing the targeted topic granularity. We also establish
a term ranking and use semantic word-embedding for presenting term communities
in a way that facilitates their interpretation.
We demonstrate the application of our method with a widely used corpus of
general news articles and show the results of detailed social-sciences expert
evaluations of detected topics at various resolutions. A comparison with topics
detected by Latent Dirichlet Allocation is also included. Finally, we discuss
factors that influence topic interpretation.
- Abstract(参考訳): 巨大なテキストコレクションにおけるトピック検出のためのネットワークベースの手順は、確率的トピックモデルの直感的な代替手段を提供する。
我々は、特にドメインエキスパートの要求を念頭に置いて設計された手法を詳細に提示する。
類似の手法と同様に、項共起グラフにおけるコミュニティ検出を用いるが、対象トピックの粒度を変更するために使用できる解決パラメータを含むことで拡張される。
また, 用語ランキングを確立し, 意味的単語埋め込みを用いて, 用語コミュニティの解釈を容易にする手法を提案する。
本手法を一般ニュース記事のコーパスとして広く活用し,様々な解像度で検出された話題の詳細な社会科学専門家による評価結果を示す。
Latent Dirichlet Allocationによって検出されたトピックとの比較も含んでいる。
最後に,話題の解釈に影響を与える要因について論じる。
関連論文リスト
- Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
ToTER (Topical Taxonomy Enhanced Retrieval) フレームワークを紹介する。
ToTERは、クエリとドキュメントの中心的なトピックを分類学のガイダンスで識別し、そのトピックの関連性を利用して、欠落したコンテキストを補う。
プラグイン・アンド・プレイのフレームワークとして、ToTERは様々なPLMベースのレトリバーを強化するために柔軟に使用できる。
論文 参考訳(メタデータ) (2024-03-07T02:34:54Z) - Discovering Significant Topics from Legal Decisions with Selective
Inference [0.0]
本稿では,法的決定文から重要なトピックを発見するための自動パイプラインの提案と評価を行う。
本手法は, 結果, 話題語分布, ケーストピックの重みと有意に相関した症例トピックを同定する。
パイプラインによって導かれるトピックは,双方の分野の法的ドクトリンと一致しており,他の関連する法的分析タスクに有用であることを示す。
論文 参考訳(メタデータ) (2024-01-02T07:00:24Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
従来のエンティティ曖昧化(ED)メソッドは、参照コンテキストと候補エンティティの一致するスコアに基づいて予測を行う、識別パラダイムを採用している。
本稿では,エンティティ予測のコヒーレンス向上を目的とした新しいデザインを備えたEDシステムであるCoherentedを提案する。
我々は、人気EDベンチマークにおいて、平均1.3F1ポイントの改善により、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-11-06T16:40:13Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - A Human Word Association based model for topic detection in social networks [1.8749305679160366]
本稿では,単語連想の心的能力を模倣する概念に基づく,ソーシャルネットワークの話題検出フレームワークを提案する。
このフレームワークの性能は、トピック検出の分野におけるベンチマークであるFA-CUPデータセットを用いて評価される。
論文 参考訳(メタデータ) (2023-01-30T17:10:34Z) - Contextual information integration for stance detection via
cross-attention [59.662413798388485]
スタンス検出は、著者の目標に対する姿勢を特定することを扱う。
既存のスタンス検出モデルの多くは、関連するコンテキスト情報を考慮していないため、制限されている。
文脈情報をテキストとして統合する手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T15:04:29Z) - Enhance Topics Analysis based on Keywords Properties [0.0]
本稿では,最も情報性の高いトピックを選択可能なキーワード特性に基づく特異度スコアを示す。
実験では,最近の文献におけるコヒーレンススコアに基づいて,様々な要因のトピックモデリング結果を,解よりもはるかに低い情報損失で圧縮できることを示した。
論文 参考訳(メタデータ) (2022-03-09T15:10:12Z) - Comprehensive Studies for Arbitrary-shape Scene Text Detection [78.50639779134944]
ボトムアップに基づくシーンテキスト検出のための統合フレームワークを提案する。
統一されたフレームワークの下では、非コアモジュールの一貫性のある設定が保証されます。
包括的調査と精巧な分析により、以前のモデルの利点と欠点を明らかにしている。
論文 参考訳(メタデータ) (2021-07-25T13:18:55Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Vocabulary-based Method for Quantifying Controversy in Social Media [0.0]
本研究では,ソーシャルメディアのコミュニティで主に使用されているジャーゴンに基づく論争検出手法を開発した。
本手法はドメイン固有知識の使用を不要とし,言語に依存しない,効率的で,適用が容易な手法である。
論文 参考訳(メタデータ) (2020-01-14T17:43:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。