Test-Time Training for Deformable Multi-Scale Image Registration
- URL: http://arxiv.org/abs/2103.13578v1
- Date: Thu, 25 Mar 2021 03:22:59 GMT
- Title: Test-Time Training for Deformable Multi-Scale Image Registration
- Authors: Wentao Zhu and Yufang Huang and Daguang Xu and Zhen Qian and Wei Fan
and Xiaohui Xie
- Abstract summary: Deep learning-based registration approaches such as VoxelMorph have been emerging and achieve competitive performance.
We construct a test-time training for deep deformable image registration to improve the generalization ability of conventional learning-based registration model.
- Score: 15.523457398508263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Registration is a fundamental task in medical robotics and is often a crucial
step for many downstream tasks such as motion analysis, intra-operative
tracking and image segmentation. Popular registration methods such as ANTs and
NiftyReg optimize objective functions for each pair of images from scratch,
which are time-consuming for 3D and sequential images with complex
deformations. Recently, deep learning-based registration approaches such as
VoxelMorph have been emerging and achieve competitive performance. In this
work, we construct a test-time training for deep deformable image registration
to improve the generalization ability of conventional learning-based
registration model. We design multi-scale deep networks to consecutively model
the residual deformations, which is effective for high variational
deformations. Extensive experiments validate the effectiveness of multi-scale
deep registration with test-time training based on Dice coefficient for image
segmentation and mean square error (MSE), normalized local cross-correlation
(NLCC) for tissue dense tracking tasks. Two videos are in
https://www.youtube.com/watch?v=NvLrCaqCiAE and
https://www.youtube.com/watch?v=pEA6ZmtTNuQ
Related papers
- Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - FastMIM: Expediting Masked Image Modeling Pre-training for Vision [65.47756720190155]
FastMIM is a framework for pre-training vision backbones with low-resolution input images.
It reconstructs Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images.
It can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones.
arXiv Detail & Related papers (2022-12-13T14:09:32Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
We propose a Non-Iterative Coarse-to-finE registration network (NICE-Net) for deformable image registration.
NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.
arXiv Detail & Related papers (2022-06-25T08:34:59Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
We present a novel reinforcement learning-based framework that performs step-wise registration of medical images with large deformations.
We evaluate our method on several 2D and 3D medical image datasets, some of which contain large deformations.
arXiv Detail & Related papers (2021-12-14T14:08:56Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z) - A Meta-Learning Approach for Medical Image Registration [6.518615946009265]
We propose a novel unsupervised registration model which is integrated with a gradient-based meta learning framework.
In our experiments, the proposed model obtained significantly improved performance in terms of accuracy and training time.
arXiv Detail & Related papers (2021-04-21T10:27:05Z) - CycleMorph: Cycle Consistent Unsupervised Deformable Image Registration [34.546992605648086]
We present a cycle-consistent deformable image registration. The cycle consistency enhances image registration performance by providing an implicit regularization to preserve topology during the deformation.
Experimental results on various datasets from medical and non-medical applications demonstrate that the proposed method provides effective and accurate registration on diverse image pairs within a few seconds.
arXiv Detail & Related papers (2020-08-13T09:30:12Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.