論文の概要: Structured Deep Kernel Networks for Data-Driven Closure Terms of
Turbulent Flows
- arxiv url: http://arxiv.org/abs/2103.13655v1
- Date: Thu, 25 Mar 2021 08:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:21:13.775252
- Title: Structured Deep Kernel Networks for Data-Driven Closure Terms of
Turbulent Flows
- Title(参考訳): 乱流のデータ駆動閉包のための構造的ディープカーネルネットワーク
- Authors: Tizian Wenzel, Marius Kurz, Andrea Beck, Gabriele Santin, Bernard
Haasdonk
- Abstract要約: 我々は最近導入された高次元および巨大なデータセットを扱うことができるStructured Deep Kernel Network(SDKN)アプローチについてレビューする。
実験により、SDKNは大きなデータセットを処理でき、与えられたアプリケーションに対してほぼ完璧な精度を達成できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard kernel methods for machine learning usually struggle when dealing
with large datasets. We review a recently introduced Structured Deep Kernel
Network (SDKN) approach that is capable of dealing with high-dimensional and
huge datasets - and enjoys typical standard machine learning approximation
properties. We extend the SDKN to combine it with standard machine learning
modules and compare it with Neural Networks on the scientific challenge of
data-driven prediction of closure terms of turbulent flows. We show
experimentally that the SDKNs are capable of dealing with large datasets and
achieve near-perfect accuracy on the given application.
- Abstract(参考訳): 機械学習の標準的なカーネルメソッドは通常、大規模なデータセットを扱う際に苦労する。
本稿では,高次元および大規模データセットを処理可能な構造的深層カーネルネットワーク(sdkn)アプローチについて検討し,一般的な機械学習近似特性を享受する。
SDKNを拡張して、標準的な機械学習モジュールと組み合わせて、乱流のクロージャ項のデータ駆動予測の科学的課題について、ニューラルネットワークと比較する。
実験により、SDKNは大きなデータセットを処理でき、与えられたアプリケーションに対してほぼ完璧な精度を達成できることを示した。
関連論文リスト
- Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - On the Robustness and Generalization of Deep Learning Driven Full
Waveform Inversion [2.5382095320488665]
フルウェーブフォーム・インバージョン(FWI)は画像から画像への変換タスクとして一般的にエピトマイズされる。
合成データでトレーニングされているにもかかわらず、ディープラーニング駆動のFWIは、十分な実世界のデータで評価すると、良好に動作することが期待されている。
これらのディープニューラルネットワークはどの程度堅牢で、どのように一般化されているのか?
論文 参考訳(メタデータ) (2021-11-28T19:27:59Z) - Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
Benchmark Study [100.27567794045045]
ディープグラフニューラルネットワーク(GNN)のトレーニングは、非常に難しい。
我々は、深層GNNの「トリック」を評価するための最初の公正かつ再現可能なベンチマークを示す。
論文 参考訳(メタデータ) (2021-08-24T05:00:37Z) - Universality and Optimality of Structured Deep Kernel Networks [0.0]
カーネルベースの手法は、柔軟で効率的で強力な近似モデルを生み出す。
機械学習手法の最近の成功は、ディープニューラルネットワーク(NN)によって駆動されている。
本稿では,特殊なタイプのカーネルを用いることで,ニューラルネットワークを連想させるモデルが得られることを示す。
論文 参考訳(メタデータ) (2021-05-15T14:10:35Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - On the Empirical Neural Tangent Kernel of Standard Finite-Width
Convolutional Neural Network Architectures [3.4698840925433765]
NTK理論が実際に一般的な幅の標準的なニューラルネットワークアーキテクチャをいかにうまくモデル化するかは、まだ明らかな疑問である。
我々はこの疑問を、AlexNetとLeNetという2つのよく知られた畳み込みニューラルネットワークアーキテクチャに対して実証的に研究する。
これらのネットワークのより広いバージョンでは、完全に接続されたレイヤのチャネル数や幅が増加すると、偏差は減少する。
論文 参考訳(メタデータ) (2020-06-24T11:40:36Z) - Dropout: Explicit Forms and Capacity Control [57.36692251815882]
各種機械学習問題におけるドロップアウトによるキャパシティ制御について検討する。
ディープラーニングでは、ドロップアウトによるデータ依存型正規化器が、基礎となるディープニューラルネットワークのクラスであるRademacherの複雑さを直接制御していることを示す。
MovieLens, MNIST, Fashion-MNISTなどの実世界のデータセットに関する理論的知見を評価する。
論文 参考訳(メタデータ) (2020-03-06T19:10:15Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z) - Disentangling Trainability and Generalization in Deep Neural Networks [45.15453323967438]
我々は,ニューラルネットワークのトレーニング性と一般化のために,NTK(Neural Tangent Kernel)のスペクトルを分析した。
グローバル平均プールのないCNNはFCNとほぼ同じ挙動を示すが、プールを持つCNNは著しく異なり、しばしば一般化性能が向上している。
論文 参考訳(メタデータ) (2019-12-30T18:53:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。