論文の概要: An Empirical Analysis of Image-Based Learning Techniques for Malware
Classification
- arxiv url: http://arxiv.org/abs/2103.13827v1
- Date: Wed, 24 Mar 2021 16:10:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 04:08:22.657785
- Title: An Empirical Analysis of Image-Based Learning Techniques for Malware
Classification
- Title(参考訳): マルウェア分類のための画像ベース学習技術の実証分析
- Authors: Pratikkumar Prajapati and Mark Stamp
- Abstract要約: 本稿では,ディープラーニング技術と画像に基づく特徴を用いたマルウェア分類について検討する。
私たちは、多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、長期短期メモリ(LSTM)、ゲートリカレントユニット(GRU)など、幅広いディープラーニング技術を採用しています。
- 参考スコア(独自算出の注目度): 4.111899441919165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider malware classification using deep learning
techniques and image-based features. We employ a wide variety of deep learning
techniques, including multilayer perceptrons (MLP), convolutional neural
networks (CNN), long short-term memory (LSTM), and gated recurrent units (GRU).
Amongst our CNN experiments, transfer learning plays a prominent role
specifically, we test the VGG-19 and ResNet152 models. As compared to previous
work, the results presented in this paper are based on a larger and more
diverse malware dataset, we consider a wider array of features, and we
experiment with a much greater variety of learning techniques. Consequently,
our results are the most comprehensive and complete that have yet been
published.
- Abstract(参考訳): 本稿では,ディープラーニング技術と画像に基づく特徴を用いたマルウェア分類について検討する。
我々は多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、長期記憶(LSTM)、ゲートリカレントユニット(GRU)など多種多様なディープラーニング技術を採用している。
CNN実験の中では、転送学習が特に重要な役割を担い、VGG-19とResNet152モデルをテストする。
これまでの研究と比較して,本論文で提示された結果は,より大きく,より多様なマルウェアデータセットに基づいており,より広範な機能を検討し,より多様な学習手法を実験している。
その結果、我々の成果は、まだ公表されていない最も包括的で完全なものである。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
我々はLoGoNetと呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
LoGoNetは、LKA(Large Kernel Attention)とデュアルエンコーディング戦略を利用して、U字型アーキテクチャに新しい特徴抽出器を統合する。
大規模ラベル付きデータセットの欠如を補うために,3次元画像に適した新しいSSL方式を提案する。
論文 参考訳(メタデータ) (2024-02-09T05:06:58Z) - Multi-domain learning CNN model for microscopy image classification [3.2835754110596236]
顕微鏡画像の分類のためのマルチドメイン学習アーキテクチャを提案する。
計算集約的な従来の方法とは異なり、Mobincepと呼ばれるコンパクトモデルを開発した。
最先端の結果を超え、ラベル付きデータに対して堅牢である。
論文 参考訳(メタデータ) (2023-04-20T19:32:23Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Few-Shot Learning for Image Classification of Common Flora [0.0]
MAML(Model-Agnostic Meta Learning)を用いた画像分類のためのメタラーニング分野の最先端の研究と、さまざまな最先端のトランスファーラーニングウェイトとアーキテクチャをテストした結果を紹介します。
その結果、データセットが十分に大きい場合、両方のプラクティスが十分なパフォーマンスを提供しますが、十分なパフォーマンスを維持するためにデータスパーシャビリティが導入されると、どちらも苦労しています。
論文 参考訳(メタデータ) (2021-05-07T03:54:51Z) - Deep Features for training Support Vector Machine [16.795405355504077]
本稿では,訓練済みcnnから抽出した特徴に基づく汎用コンピュータビジョンシステムを開発した。
複数の学習特徴を単一の構造に組み合わせ、異なる画像分類タスクに取り組んでいます。
論文 参考訳(メタデータ) (2021-04-08T03:13:09Z) - Self supervised contrastive learning for digital histopathology [0.0]
我々はSimCLRと呼ばれる対照的な自己教師型学習手法を用いて、自然シーン画像の最先端結果を得た。
異なる種類の染色特性と分解特性とを組み合わせることで,学習した特徴の質が向上することがわかった。
学習した機能に基づいてトレーニングされた線形分類器は、デジタル病理学データセットで事前トレーニングされたネットワークが、ImageNet事前トレーニングされたネットワークよりも優れたパフォーマンスを示すことを示している。
論文 参考訳(メタデータ) (2020-11-27T19:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。