A compressive sensing based parameter estimation for free space
continuous variable quantum key distribution
- URL: http://arxiv.org/abs/2103.14181v1
- Date: Thu, 25 Mar 2021 23:58:40 GMT
- Title: A compressive sensing based parameter estimation for free space
continuous variable quantum key distribution
- Authors: Xiaowen Liu, Chen Dong, Xingyu Wang, Tianyi Wu
- Abstract summary: In satellite-based free-space continuous-variable QKD (CV-QKD), the parameter estimation for the atmospheric channel fluctuations is crucial.
CS theory is applied to CV-QKD to achieve the channel parameter estimation with low computational complexity and small amount of data.
- Score: 11.993734284815687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In satellite-based free-space continuous-variable QKD (CV-QKD), the parameter
estimation for the atmospheric channel fluctuations due to the turbulence
effects and attenuation is crucial for analyzing and improving the protocol
performance. In this paper, compressive sensing (CS) theory is applied to
free-space CV-QKD to achieve the channel parameter estimation with low
computational complexity and small amount of data. According to CS theory, the
possibility of the sparse representation for free-space channel is analyzed and
the two types of sparse reconstruction models for the channel parameters are
constructed combining with the stability of the sub-channels. The most part of
variable for parameter estimation is saved by using the model relying on the
variables in the quantum signals, while all the variables can be used to
generate the secret key by using the model relying on the second-order
statistics of the variables. The methods are well adapted for the cases with
the limited communication time since a little or no variable is sacrificed for
parameter estimation. Finally, simulation results are given to verify the
effectiveness of the proposed methods.
Related papers
- Likelihood-Free Inference and Hierarchical Data Assimilation for Geological Carbon Storage [0.0]
We develop a hierarchical data assimilation framework for carbon storage.
Uses Monte Carlo-based approximate Bayesian computation.
Reduces computational costs by using a 3D recurrent R-U-Net deep-learning surrogate model.
arXiv Detail & Related papers (2024-10-20T06:15:56Z) - Linearly simplified QAOA parameters and transferability [0.6834295298053009]
Quantum Approximate Algorithm Optimization (QAOA) provides a way to solve optimization problems using quantum computers.
We present some numerical results that are obtained for instances of the random Ising model and of the max-cut problem.
arXiv Detail & Related papers (2024-05-01T17:34:32Z) - Towards Accurate Post-training Quantization for Reparameterized Models [6.158896686945439]
Current Post-training Quantization (PTQ) methods often lead to significant accuracy degradation.
This is primarily caused by channel-specific and sample-specific outliers.
We propose RepAPQ, a novel framework that preserves the accuracy of quantized reparameterization models.
arXiv Detail & Related papers (2024-02-25T15:42:12Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Heisenberg scaling precision in the estimation of functions of
parameters [0.0]
We propose a metrological strategy reaching Heisenberg scaling precision in the estimation of functions of any number $l$ of arbitrary parameters encoded in a generic $M$-channel linear network.
Two auxiliary linear network are required and their role is twofold: to refocus the signal into a single channel after the interaction with the interferometer, and to fix the function of the parameters to be estimated according to the linear network analysed.
arXiv Detail & Related papers (2021-03-15T17:28:15Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.