Likelihood-Free Inference and Hierarchical Data Assimilation for Geological Carbon Storage
- URL: http://arxiv.org/abs/2410.15302v1
- Date: Sun, 20 Oct 2024 06:15:56 GMT
- Title: Likelihood-Free Inference and Hierarchical Data Assimilation for Geological Carbon Storage
- Authors: Wenchao Teng, Louis J. Durlofsky,
- Abstract summary: We develop a hierarchical data assimilation framework for carbon storage.
Uses Monte Carlo-based approximate Bayesian computation.
Reduces computational costs by using a 3D recurrent R-U-Net deep-learning surrogate model.
- Score: 0.0
- License:
- Abstract: Data assimilation will be essential for the management and expansion of geological carbon storage operations. In traditional data assimilation approaches a fixed set of geological hyperparameters, such as mean and standard deviation of log-permeability, is often assumed. Such hyperparameters, however, may be highly uncertain in practical CO2 storage applications. In this study, we develop a hierarchical data assimilation framework for carbon storage that treats hyperparameters as uncertain variables characterized by hyperprior distributions. To deal with the computationally intractable likelihood function in hyperparameter estimation, we apply a likelihood-free (or simulation-based) inference algorithm, specifically sequential Monte Carlo-based approximate Bayesian computation (SMC-ABC), to draw independent posterior samples of hyperparameters given dynamic monitoring-well data. In the second step we use an ensemble smoother with multiple data assimilation (ESMDA) procedure to provide posterior realizations of grid-block permeability. To reduce computational costs, a 3D recurrent R-U-Net deep-learning surrogate model is applied for forward function evaluations. The accuracy of the surrogate model is established through comparisons to high-fidelity simulation results. A rejection sampling (RS) procedure for data assimilation is applied to provide reference posterior results. Detailed data assimilation results from SMC-ABC-ESMDA are compared to those from the reference RS method. These include marginal posterior distributions of hyperparameters, pairwise posterior samples, and history matching results for pressure and saturation at the monitoring location. Close agreement is achieved with 'converged' RS results, for two synthetic true models, in all quantities considered. Importantly, the SMC-ABC-ESMDA procedure provides speedup of 1-2 orders of magnitude relative to RS for the two cases.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA)
We also introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML)
Our comparative analyses show that SH-RML offers better uncertainty compared to conventional ESMDA for the case study.
arXiv Detail & Related papers (2024-02-09T00:24:46Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - History Matching for Geological Carbon Storage using Data-Space
Inversion with Spatio-Temporal Data Parameterization [0.0]
In data-space inversion (DSI), history-matched quantities of interest are inferred directly, without constructing posterior geomodels.
This is accomplished efficiently using a set of O(1000) prior simulation results, data parameterization, and posterior sampling within a Bayesian setting.
The new parameterization uses an adversarial autoencoder (AAE) for dimension reduction and a convolutional long short-term memory (convLSTM) network to represent the spatial distribution and temporal evolution of the pressure and saturation fields.
arXiv Detail & Related papers (2023-10-05T00:50:06Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
Kernelized tensor Regression (BKTR) can be considered a new and scalable approach to modeling processes with low-rank cotemporal structure.
We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and inference.
arXiv Detail & Related papers (2021-08-31T19:22:23Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Data-Space Inversion Using a Recurrent Autoencoder for Time-Series
Parameterization [0.0]
We develop and evaluate a new approach for data parameterization in data-space inversion (DSI)
The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-term memory (LSTM) network to represent flow-rate time series.
The RAE-based parameterization is clearly useful in DSI, and it may also find application in other subsurface flow problems.
arXiv Detail & Related papers (2020-04-30T19:17:58Z) - Dual Stochastic Natural Gradient Descent and convergence of interior
half-space gradient approximations [0.0]
Multinomial logistic regression (MLR) is widely used in statistics and machine learning.
gradient descent (SGD) is the most common approach for determining the parameters of a MLR model in big data scenarios.
arXiv Detail & Related papers (2020-01-19T00:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.