Testing identity of collections of quantum states: sample complexity
analysis
- URL: http://arxiv.org/abs/2103.14511v5
- Date: Thu, 7 Sep 2023 17:06:27 GMT
- Title: Testing identity of collections of quantum states: sample complexity
analysis
- Authors: Marco Fanizza, Raffaele Salvia, Vittorio Giovannetti
- Abstract summary: We show that for a collection of $d$-dimensional quantum states of cardinality $N$, the sample complexity is $O(sqrtNd/epsilon2)$.
The test is obtained by estimating the mean squared-Schmidt distance between the states.
- Score: 1.227734309612871
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the problem of testing identity of a collection of unknown quantum
states given sample access to this collection, each state appearing with some
known probability. We show that for a collection of $d$-dimensional quantum
states of cardinality $N$, the sample complexity is $O(\sqrt{N}d/\epsilon^2)$,
{with a matching lower bound, up to a multiplicative constant}. The test is
obtained by estimating the mean squared Hilbert-Schmidt distance between the
states, thanks to a suitable generalization of the estimator of the
Hilbert-Schmidt distance between two unknown states by B\u{a}descu, O'Donnell,
and Wright (https://dl.acm.org/doi/10.1145/3313276.3316344).
Related papers
- On the sample complexity of purity and inner product estimation [8.94496959777308]
We study the sample complexity of the tasks quantum purity estimation and quantum inner product estimation.
In purity estimation, we are to estimate $tr(rho2)$ of an unknown quantum state $rho$ to additive error $epsilon$.
For quantum inner product estimation, Alice and Bob are to estimate $tr(rhosigma)$ to additive error $epsilon$ given copies of unknown quantum state $rho$ and $sigma$.
arXiv Detail & Related papers (2024-10-16T16:17:21Z) - Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Ultra-quantum coherent states in a single finite quantum system [0.0]
A set of $n$ coherent states is introduced in a quantum system with $d$-dimensional Hilbert space $H(d)$.
They resolve the identity, and also have a discrete isotropy property.
A finite cyclic group acts on the set of these coherent states, and partitions it into orbits.
arXiv Detail & Related papers (2023-11-17T10:05:00Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - SWAP Test for an Arbitrary Number of Quantum States [4.989480853499916]
We develop an algorithm to generalize the quantum SWAP test for an arbitrary number $m$ of quantum states.
We construct a quantum circuit able to simultaneously measure overlaps of $m$ arbitrary pure states.
arXiv Detail & Related papers (2021-10-25T20:53:44Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.