On the sample complexity of purity and inner product estimation
- URL: http://arxiv.org/abs/2410.12712v1
- Date: Wed, 16 Oct 2024 16:17:21 GMT
- Title: On the sample complexity of purity and inner product estimation
- Authors: Weiyuan Gong, Jonas Haferkamp, Qi Ye, Zhihan Zhang,
- Abstract summary: We study the sample complexity of the tasks quantum purity estimation and quantum inner product estimation.
In purity estimation, we are to estimate $tr(rho2)$ of an unknown quantum state $rho$ to additive error $epsilon$.
For quantum inner product estimation, Alice and Bob are to estimate $tr(rhosigma)$ to additive error $epsilon$ given copies of unknown quantum state $rho$ and $sigma$.
- Score: 8.94496959777308
- License:
- Abstract: We study the sample complexity of the prototypical tasks quantum purity estimation and quantum inner product estimation. In purity estimation, we are to estimate $tr(\rho^2)$ of an unknown quantum state $\rho$ to additive error $\epsilon$. Meanwhile, for quantum inner product estimation, Alice and Bob are to estimate $tr(\rho\sigma)$ to additive error $\epsilon$ given copies of unknown quantum state $\rho$ and $\sigma$ using classical communication and restricted quantum communication. In this paper, we show a strong connection between the sample complexity of purity estimation with bounded quantum memory and inner product estimation with bounded quantum communication and unentangled measurements. We propose a protocol that solves quantum inner product estimation with $k$-qubit one-way quantum communication and unentangled local measurements using $O(median\{1/\epsilon^2,2^{n/2}/\epsilon,2^{n-k}/\epsilon^2\})$ copies of $\rho$ and $\sigma$. Our protocol can be modified to estimate the purity of an unknown quantum state $\rho$ using $k$-qubit quantum memory with the same complexity. We prove that arbitrary protocols with $k$-qubit quantum memory that estimate purity to error $\epsilon$ require $\Omega(median\{1/\epsilon^2,2^{n/2}/\sqrt{\epsilon},2^{n-k}/\epsilon^2\})$ copies of $\rho$. This indicates the same lower bound for quantum inner product estimation with one-way $k$-qubit quantum communication and classical communication, and unentangled local measurements. For purity estimation, we further improve the lower bound to $\Omega(\max\{1/\epsilon^2,2^{n/2}/\epsilon\})$ for any protocols using an identical single-copy projection-valued measurement. Additionally, we investigate a decisional variant of quantum distributed inner product estimation without quantum communication for mixed state and provide a lower bound on the sample complexity.
Related papers
- Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
In quantum mechanics, measuring the expectation value of a general observable has an inherent statistical uncertainty.
We provide an adaptive quantum algorithm for estimating the expectation values of $M$ general observables within root mean squared error.
Our method paves a new way to precisely understand and predict various physical properties in complicated quantum systems using quantum computers.
arXiv Detail & Related papers (2024-06-05T14:16:47Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Distributed quantum inner product estimation [14.222887950206658]
A benchmarking task known as cross-platform verification has been proposed that aims to estimate the fidelity of states prepared on two quantum computers.
No quantum communication can be performed between the two physical platforms due to hardware constraints.
We show that the sample complexity must be at least $Omega(max1/varepsilon2,sqrtd/varepsilon)$, even in the strongest setting.
arXiv Detail & Related papers (2021-11-05T05:35:03Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Quantum Communication Complexity of Distribution Testing [114.31181206328276]
Two players each receive $t$ samples from one distribution over $[n]$.
The goal is to decide whether their two distributions are equal, or are $epsilon$-far apart.
We show that the quantum communication complexity of this problem is $tildeO$(tepsilon2))$ qubits when distributions have low $l$-norm.
arXiv Detail & Related papers (2020-06-26T09:05:58Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.