Quantum Interference between Photons and Single Quanta of Stored Atomic
Coherence
- URL: http://arxiv.org/abs/2109.11148v2
- Date: Fri, 25 Feb 2022 14:21:57 GMT
- Title: Quantum Interference between Photons and Single Quanta of Stored Atomic
Coherence
- Authors: Xingchang Wang, Jianmin Wang, Zhiqiang Ren, Rong Wen, Chang-Ling Zou,
Georgios A. Siviloglou, and J. F. Chen
- Abstract summary: We observe quantum interference between flying photons and a single quantum of stored atomic coherence (magnon) in an atom-light beam splitter interface.
The bunching behavior that characterizes bosons is observed, but counterintuitively, fermionlike antibunching as well.
The hybrid nature of the demonstrated magnon-photon quantum interface can be applied to versatile quantum memory platforms.
- Score: 19.90349094720023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Essential for building quantum networks over remote independent nodes, the
indistinguishability of photons has been extensively studied by observing the
coincidence dip in the Hong-Ou-Mandel interferometer. However,
indistinguishability is not limited to the same type of bosons. For the first
time, we hereby observe quantum interference between flying photons and a
single quantum of stored atomic coherence (magnon) in an atom-light beam
splitter interface. We demonstrate that the Hermiticity of this interface
determines the type of quantum interference between photons and magnons.
Consequently, not only the bunching behavior that characterizes bosons is
observed, but counterintuitively, fermionlike antibunching as well. The hybrid
nature of the demonstrated magnon-photon quantum interface can be applied to
versatile quantum memory platforms, and can lead to fundamentally different
photon distributions from those occurring in boson sampling.
Related papers
- How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Quantum interference between non-identical single particles [5.9606530319748385]
Quantum interference between identical single particles reveals the intrinsic quantum statistic nature of particles.
Our work extends the understanding of the quantum interference effects and demonstrates a versatile experimental platform for studying and engineering quantum statistics of particles.
arXiv Detail & Related papers (2023-08-24T09:36:35Z) - Quantum correlated photons via a passive nonlinear microcavity [1.0753191494611891]
We create non-classical photon correlations, including photon anti-bunching, via a passive InGaP photonic integrated circuit.
Our work opens a new route in controlling quantum light by harnessing highly-engineerable bulk optical nonlinearities.
arXiv Detail & Related papers (2023-04-23T15:02:36Z) - Coherently driven quantum features using a linear optics-based
polarization-basis control [0.0]
Coherence approach has been applied to interpret quantum features such as the Hong-Ou-Mandel (HOM) effect.
A perfectly coherent analysis shows the same photon bunching of the paired coherent photons on a beam splitter.
arXiv Detail & Related papers (2023-03-22T15:09:14Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Multiphoton non-local quantum interference controlled by an undetected
photon [3.316485412174328]
Multipartite generalization of single-quanta interference creates entanglement, the coherent superposition of states shared by several quanta.
Entanglement is typically considered to be essential for creating non-local correlations, manifested by multipartite interference.
We show that this is not the case and demonstrate multiphoton non-local quantum interference without entanglement of any intrinsic properties of the photons.
arXiv Detail & Related papers (2021-12-22T04:07:54Z) - Deterministic quantum correlation between coherently paired photons
acting on a beam splitter [0.0]
We study the quantum natures of paired photons acting on a beam splitter, where mutual coherence plays a major role.
Unlike current common understanding on anticorrelation, bipartite entanglement between paired photons does not have to be probabilistic or post-selected.
arXiv Detail & Related papers (2021-08-21T23:24:18Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.