論文の概要: Transmitter Discovery through Radio-Visual Probabilistic Active Sensing
- arxiv url: http://arxiv.org/abs/2103.14965v1
- Date: Sat, 27 Mar 2021 18:34:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-01 11:30:59.270169
- Title: Transmitter Discovery through Radio-Visual Probabilistic Active Sensing
- Title(参考訳): 放射能確率アクティブセンシングによる透過体発見
- Authors: Luca Varotto, Angelo Cenedese
- Abstract要約: 送信機発見問題を解決するために,バイラジオ・ビジュアルPAS方式を提案する。
提案手法は92%の精度を実現し,他の2つの確率的アクティブセンシングベースラインを上回った。
- 参考スコア(独自算出の注目度): 1.7259824817932292
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Multi-modal Probabilistic Active Sensing (MMPAS) uses sensor fusion and
probabilistic models to control the perception process of robotic sensing
platforms. MMPAS is successfully employed in environmental exploration,
collaborative mobile robotics, and target tracking, being fostered by the high
performance guarantees on autonomous perception. In this context, we propose a
bi-Radio-Visual PAS scheme to solve the transmitter discovery problem.
Specifically, we firstly exploit the correlation between radio and visual
measurements to learn a target detection model in a self-supervised manner.
Then, the model is combined with antenna radiation anisotropies into a Bayesian
Optimization framework that controls the platform. We show that the proposed
algorithm attains an accuracy of 92%, overcoming two other probabilistic active
sensing baselines.
- Abstract(参考訳): マルチモーダル確率アクティブセンシング(mmpas)は、センサー融合と確率モデルを用いてロボットセンシングプラットフォームの知覚過程を制御する。
MMPASは、環境探索、協調移動ロボット、目標追跡に成功し、自律認識における高性能な保証によって育成されている。
そこで本稿では,送信機発見問題を解決するためのバイラジオ・ビジュアルPAS方式を提案する。
具体的には、まず無線と視覚の相関を利用して目標検出モデルを自己監督的に学習する。
そして、このモデルとアンテナ放射異方性を組み合わせたベイズ最適化フレームワークがプラットフォームを制御する。
提案手法は92%の精度を実現し,他の2つの確率的アクティブセンシングベースラインを上回った。
関連論文リスト
- POMDP-Driven Cognitive Massive MIMO Radar: Joint Target Detection-Tracking In Unknown Disturbances [42.99053410696693]
この研究は、トラッキングと検出タスクを強化するために、部分的に観測可能なマルコフ決定プロセスフレームワークの適用について検討する。
提案手法では,ノイズ統計に関するアプリオリ知識を必要としないオンラインアルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-10-23T15:34:11Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Environment-independent mmWave Fall Detection with Interacting Multiple
Model [1.9358739203360094]
mmWave radarは、プライバシー保護と非接触性のための有望な候補技術である。
FADEは現実のシナリオにおいて精度と堅牢性を高めた実用的な落下検知レーダーシステムである。
論文 参考訳(メタデータ) (2023-11-15T07:49:46Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
テラヘルツ(THz)無線システムに対する拡張現実(XR)体験を最適化するために、新しい共同センシング、通信、人工知能(AI)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T00:39:50Z) - Multi-Point Integrated Sensing and Communication: Fusion Model and
Functionality Selection [99.67715229413986]
本稿では,複数のISACデバイスからの出力を融合させて高感度化を実現する多点ISAC(MPISAC)システムを提案する。
我々は,仮説テストと最適投票分析により,融合精度を予測する融合モデルを採用する。
論文 参考訳(メタデータ) (2022-08-16T08:09:54Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - Self-Supervised Radio-Visual Representation Learning for 6G Sensing [1.9766522384767227]
将来の6Gセルネットワークでは、共同通信およびセンシングプロトコルにより、ネットワークが環境を知覚できるようになる。
人間の介入を最小限に抑えて無線のみのセンシングモデルを自動的に学習するために,無線と視覚を組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-11-01T12:23:47Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - SSTN: Self-Supervised Domain Adaptation Thermal Object Detection for
Autonomous Driving [6.810856082577402]
コントラスト学習により可視スペクトル領域と赤外スペクトル領域の情報を最大化するための機能埋め込みを学習するためのディープニューラルネットワークSelf Supervised Thermal Network (SSTN)を提案する。
提案手法は、FLIR-ADASデータセットとKAISTマルチスペクトラルデータセットの2つの公開データセットで広く評価されている。
論文 参考訳(メタデータ) (2021-03-04T16:42:49Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。