論文の概要: Representation Learning by Ranking under multiple tasks
- arxiv url: http://arxiv.org/abs/2103.15093v1
- Date: Sun, 28 Mar 2021 09:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-03-31 10:26:50.704317
- Title: Representation Learning by Ranking under multiple tasks
- Title(参考訳): 複数の課題によるランキングによる表現学習
- Authors: Lifeng Gu
- Abstract要約: 近似的なNDCG損失を最適化することにより、複数のタスクにおける表現学習問題を解く。
分類、検索、マルチラベル学習、回帰、自己監督学習などの異なる学習タスクの下での実験は、近似NDCG損失の優位性を証明します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, representation learning has become the research focus of the
machine learning community. Large-scale pre-training neural networks have
become the first step to realize general intelligence. The key to the success
of neural networks lies in their abstract representation capabilities for data.
Several learning fields are actually discussing how to learn representations
and there lacks a unified perspective. We convert the representation learning
problem under multiple tasks into a ranking problem, taking the ranking problem
as a unified perspective, the representation learning under different tasks is
solved by optimizing the approximate NDCG loss. Experiments under different
learning tasks like classification, retrieval, multi-label learning,
regression, self-supervised learning prove the superiority of approximate NDCG
loss. Further, under the self-supervised learning task, the training data is
transformed by data augmentation method to improve the performance of the
approximate NDCG loss, which proves that the approximate NDCG loss can make
full use of the information of the unsupervised training data.
- Abstract(参考訳): 近年,表現学習が機械学習コミュニティの研究の焦点となっている。
大規模事前学習ニューラルネットワークは、汎用知性を実現するための最初のステップとなっている。
ニューラルネットワークの成功の鍵は、データの抽象表現能力にある。
いくつかの学習分野は実際に表現の学習方法について議論しており、統一された視点がない。
我々は、複数のタスクの表現学習問題をランキング問題に変換し、ランキング問題を統一的な視点として、近似的なNDCG損失を最適化することにより、異なるタスクの表現学習を解決する。
分類、検索、マルチラベル学習、回帰、自己教師あり学習などの異なる学習タスクの下での実験は、近似ndcg損失の優位性が証明される。
さらに、自己教師付き学習タスクにおいて、トレーニングデータをデータ拡張法により変換し、近似NDCG損失の性能を向上させることにより、近似NDCG損失が教師なしトレーニングデータの情報をフル活用できることを示す。
関連論文リスト
- Heterogeneous Graph Neural Networks with Loss-decrease-aware Curriculum Learning [1.2224845909459847]
不均一グラフニューラルネットワーク(HGNN)は、異種情報ネットワーク(HIN)の処理において優れた性能を発揮する。
従来,HGNNを学習するためのカリキュラム学習戦略の活用が検討されてきた。
新たな損失低減対応トレーニングスケジュール(LDTS)を提案する。
論文 参考訳(メタデータ) (2024-05-10T15:06:53Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
破滅的な忘れは、機械学習の分野で重要な課題である。
本稿では,機械学習アプリケーションにおける破滅的忘れを防止する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-30T22:43:50Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
タスク境界において,タスクが終了し,他のタスク開始時に発生する新しいメカニズムを提案する。
CIFAR10やTinyImagenetなどのコンピュータビジョンデータセットのベンチマークで提案手法を評価する。
論文 参考訳(メタデータ) (2023-11-02T22:00:23Z) - A Study of Forward-Forward Algorithm for Self-Supervised Learning [65.268245109828]
本研究では,自己指導型表現学習におけるフォワードとバックプロパゲーションのパフォーマンスについて検討する。
我々の主な発見は、フォワードフォワードアルゴリズムが(自己教師付き)トレーニング中にバックプロパゲーションに相容れないように機能するのに対し、転送性能は研究されたすべての設定において著しく遅れていることである。
論文 参考訳(メタデータ) (2023-09-21T10:14:53Z) - Speech representation learning: Learning bidirectional encoders with
single-view, multi-view, and multi-task methods [7.1345443932276424]
この論文は、時間や空間によるシーケンスデータの表現学習に焦点を当てている。
学習した表現を用いて下流のシーケンス予測タスクを改善することを目的としている。
論文 参考訳(メタデータ) (2023-07-25T20:38:55Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Functional Knowledge Transfer with Self-supervised Representation
Learning [11.566644244783305]
本研究では,機能的知識伝達の方向における自己指導型表現学習の未探索ユーザビリティについて検討する。
本研究では,自己教師型学習課題と教師型学習課題の協調最適化により,機能的知識伝達を実現する。
論文 参考訳(メタデータ) (2023-03-12T21:14:59Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
本稿では視覚バックボーン(例えば視覚変換器)の効率的なトレーニングのための新しいカリキュラム学習手法を提案する。
オフザシェルフ方式として、様々な人気モデルのウォールタイムトレーニングコストを、精度を犠牲にすることなく、ImageNet-1K/22Kで1.5倍に削減する。
論文 参考訳(メタデータ) (2022-11-17T17:38:55Z) - Feature Forgetting in Continual Representation Learning [48.89340526235304]
表現は、平凡な連続学習においても「破滅的な忘れ」に苦しめられることはないが、その特徴についてはほとんど知られていない。
連続的な学習における表現を評価するためのプロトコルを考案し、それを用いて連続的な表現学習の基本的傾向の概要を示す。
特徴忘れ問題を研究するために、ニューラルネットワークにおける特徴忘れの頻度を識別し視覚化する合成データセットを作成する。
論文 参考訳(メタデータ) (2022-05-26T13:38:56Z) - Task-Induced Representation Learning [14.095897879222672]
視覚的に複雑な環境における意思決定における表現学習手法の有効性を評価する。
表現学習は、視覚的に複雑なシーンであっても、目に見えないタスクのサンプル効率を向上する。
論文 参考訳(メタデータ) (2022-04-25T17:57:10Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
本稿では,X-Learnerという表現学習フレームワークを提案する。
X-Learnerは、様々なソースによって管理される複数の視覚タスクの普遍的な特徴を学習する。
X-Learnerは、追加のアノテーションやモダリティ、計算コストを使わずに、様々なタスクで強力なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-16T17:23:26Z) - Incremental Class Learning using Variational Autoencoders with
Similarity Learning [0.0]
漸進的な学習におけるニューラルネットワークの破滅的な忘れは、依然として難しい問題である。
本研究は,段階的な授業学習における4つのよく知られた計量に基づく損失関数の破滅的忘れについて検討する。
角損失はほとんど影響を受けず, 対照的に3重項損失, 中心損失は良好な鉱業技術であった。
論文 参考訳(メタデータ) (2021-10-04T10:19:53Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
近年の自己教師型学習のブレークスルーは、このようなアルゴリズムが視覚的な表現を学習し、見えないタスクにもっとうまく移行できることを示している。
本稿では、連続的な学習と伝達可能な表現の維持に焦点を当てたリハーサルに基づく連続学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-28T06:14:38Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
我々は、生の知覚データから表現や特徴学習のためのSense and Learnというフレームワークを提案する。
これは、面倒なラベル付けプロセスに人間が関与することなく、注釈のないデータから、高レベルで広範囲に有用な特徴を学習できる補助的なタスクで構成されている。
提案手法は、教師付きアプローチと競合する結果を達成し、ネットワークを微調整し、ほとんどの場合、下流タスクを学習することでギャップを埋める。
論文 参考訳(メタデータ) (2020-09-28T11:57:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。