論文の概要: Should College Dropout Prediction Models Include Protected Attributes?
- arxiv url: http://arxiv.org/abs/2103.15237v2
- Date: Fri, 16 Apr 2021 18:53:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 08:03:50.133825
- Title: Should College Dropout Prediction Models Include Protected Attributes?
- Title(参考訳): 大学ドロップアウト予測モデルは保護属性を含むべきか?
- Authors: Renzhe Yu, Hansol Lee, Ren\'e F. Kizilcec
- Abstract要約: 機械学習モデルを構築し、1学年後に学生のドロップアウトを予測する。
モデル予測の全体的な性能と公平性を、4つの保護属性の有無で比較する。
保護属性を含むと、全体的な予測性能に影響を与えず、予測のアルゴリズム的公正さをわずかに改善することを発見した。
- 参考スコア(独自算出の注目度): 0.4125187280299248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early identification of college dropouts can provide tremendous value for
improving student success and institutional effectiveness, and predictive
analytics are increasingly used for this purpose. However, ethical concerns
have emerged about whether including protected attributes in the prediction
models discriminates against underrepresented student groups and exacerbates
existing inequities. We examine this issue in the context of a large U.S.
research university with both residential and fully online degree-seeking
students. Based on comprehensive institutional records for this entire student
population across multiple years, we build machine learning models to predict
student dropout after one academic year of study, and compare the overall
performance and fairness of model predictions with or without four protected
attributes (gender, URM, first-generation student, and high financial need). We
find that including protected attributes does not impact the overall prediction
performance and it only marginally improves algorithmic fairness of
predictions. While these findings suggest that including protected attributes
is preferred, our analysis also offers guidance on how to evaluate the impact
in a local context, where institutional stakeholders seek to leverage
predictive analytics to support student success.
- Abstract(参考訳): 大学ドロップアウトの早期発見は、学生の成功と機関効果を改善する上で大きな価値をもたらし、予測分析はこの目的のためにますます使われている。
しかし、予測モデルに保護属性を含めることが、未表現の学生集団を差別し、既存の不平等を悪化させるかどうかという倫理的懸念が浮上している。
本稿では,この課題を,米国大の研究大学と,完全オンラインの学位取得学生の両面において検討する。
学生集団全体の総合的な制度記録に基づいて,1年間の学習結果から学生の退学を予測できる機械学習モデルを構築し,モデル予測の全体的な性能と公平さを4つの保護属性(性別,urm,第1世代学生,財務ニーズ)で比較した。
保護属性を含むことは全体の予測性能に影響を与えず、予測のアルゴリズム的公平さをわずかに改善するだけである。
これらの知見は, 保護属性を含むことが望ましいことを示唆する一方で, 施設の利害関係者が予測分析を活用して学生の成功を支えようとする地域的文脈における影響を評価するためのガイダンスも提供する。
関連論文リスト
- Trading off performance and human oversight in algorithmic policy: evidence from Danish college admissions [11.378331161188022]
学生の退学は教育機関にとって重要な関心事である。
シーケンシャルなAIモデルはより正確で公正な予測を提供する。
入場決定を導くための単純なAIモデルでさえ、大きな経済的利益をもたらすと見積もっている。
論文 参考訳(メタデータ) (2024-11-22T21:12:54Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
エージェントが過去の正確性に基づいて予測を信頼するかを判断する集団リスクジレンマについて検討する。
予測が集合的な結果を形成するにつれて、社会福祉は関心の指標として自然に現れる。
よりよいトレードオフを実現し、それらをメカニズム設計に使用する方法を示します。
論文 参考訳(メタデータ) (2024-08-09T16:03:44Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Difficult Lessons on Social Prediction from Wisconsin Public Schools [32.90759447739759]
早期警戒システムは、学生が退学するリスクがあるかを予測することで、個々の学生への介入を標的にすることを支援する。
広く採用されているにもかかわらず、EWSの有効性に対する私たちの理解には大きなギャップが残っています。
本研究では,学生の退学リスクを正確に判断する実証的証拠を提示する。
卒業率の1桁の上昇を招いた可能性があるが、我々の経験的分析では、前向きな治療効果がないと確実に判断することはできない。
論文 参考訳(メタデータ) (2023-04-13T00:59:12Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Who will dropout from university? Academic risk prediction based on
interpretable machine learning [0.0]
LightGBMモデルとShapley値の解釈可能な機械学習手法に基づいて,学術的リスクを予測する。
地域の観点からは、学術的リスクに影響する要因は人によって異なる。
論文 参考訳(メタデータ) (2021-12-02T09:43:31Z) - A Fairness Analysis on Private Aggregation of Teacher Ensembles [31.388212637482365]
PATE(Private Aggregation of Teacher Ensembles)は、機械学習の重要なフレームワークである。
本稿では、このプライバシー保護フレームワークが偏見と不公平を増すか否かを問う。
PATEは個人と個人のグループ間で精度の相違をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-09-17T16:19:24Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。