論文の概要: Trading off performance and human oversight in algorithmic policy: evidence from Danish college admissions
- arxiv url: http://arxiv.org/abs/2411.15348v1
- Date: Fri, 22 Nov 2024 21:12:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:46.814598
- Title: Trading off performance and human oversight in algorithmic policy: evidence from Danish college admissions
- Title(参考訳): アルゴリズム政策におけるパフォーマンスと人間の監督の取引--デンマークの大学入学による証拠
- Authors: Magnus Lindgaard Nielsen, Jonas Skjold Raaschou-Pedersen, Emil Chrisander, David Dreyer Lassen, Julien Grenet, Anna Rogers, Andreas Bjerre-Nielsen,
- Abstract要約: 学生の退学は教育機関にとって重要な関心事である。
シーケンシャルなAIモデルはより正確で公正な予測を提供する。
入場決定を導くための単純なAIモデルでさえ、大きな経済的利益をもたらすと見積もっている。
- 参考スコア(独自算出の注目度): 11.378331161188022
- License:
- Abstract: Student dropout is a significant concern for educational institutions due to its social and economic impact, driving the need for risk prediction systems to identify at-risk students before enrollment. We explore the accuracy of such systems in the context of higher education by predicting degree completion before admission, with potential applications for prioritizing admissions decisions. Using a large-scale dataset from Danish higher education admissions, we demonstrate that advanced sequential AI models offer more precise and fair predictions compared to current practices that rely on either high school grade point averages or human judgment. These models not only improve accuracy but also outperform simpler models, even when the simpler models use protected sociodemographic attributes. Importantly, our predictions reveal how certain student profiles are better matched with specific programs and fields, suggesting potential efficiency and welfare gains in public policy. We estimate that even the use of simple AI models to guide admissions decisions, particularly in response to a newly implemented nationwide policy reducing admissions by 10 percent, could yield significant economic benefits. However, this improvement would come at the cost of reduced human oversight and lower transparency. Our findings underscore both the potential and challenges of incorporating advanced AI into educational policymaking.
- Abstract(参考訳): 学生の退学は、社会的・経済的影響から教育機関にとって重要な関心事であり、入校前にリスク予測システムを必要としている。
入学前の学位取得を予測することで、高等教育の文脈でこれらのシステムの精度を検証し、入学決定の優先順位付けに活用する可能性について検討する。
デンマークの高等教育機関からの大規模なデータセットを用いて、先進的なシーケンシャルAIモデルは、高校のポイントの平均値や人間の判断に依存する現在のプラクティスと比較して、より正確で公正な予測を提供することを示した。
これらのモデルは精度を向上するだけでなく、より単純なモデルよりも優れている。
重要なことは、学生のプロファイルが特定のプログラムや分野とどのように一致しているかを明らかにすることであり、公共政策における潜在的効率性や福祉性の向上が示唆されている。
我々は、入場決定を誘導するための単純なAIモデルの使用、特に新たに導入された全国的な政策への対応でさえ、入場率を10%削減することで、経済的に大きな利益をもたらすと見積もっている。
しかし、この改善は人間の監視を減らし透明性を低下させるコストに繋がる。
我々の発見は、先進的なAIを教育政策に取り入れる可能性と課題の両方を浮き彫りにした。
関連論文リスト
- Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Temporal and Between-Group Variability in College Dropout Prediction [0.0]
本研究では,機械学習モデルの寄与要因と予測性能を体系的に評価する。
最終年度末の降雨予測は,ランダムフォレストモデルによる入園時よりも20%高い値を示した。
学生集団間の多様性に関して、大学GPAは、伝統的に不利な背景を持つ学生にとって、仲間よりも予測的価値が高い。
論文 参考訳(メタデータ) (2024-01-12T10:43:55Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Difficult Lessons on Social Prediction from Wisconsin Public Schools [32.90759447739759]
早期警戒システムは、学生が退学するリスクがあるかを予測することで、個々の学生への介入を標的にすることを支援する。
広く採用されているにもかかわらず、EWSの有効性に対する私たちの理解には大きなギャップが残っています。
本研究では,学生の退学リスクを正確に判断する実証的証拠を提示する。
卒業率の1桁の上昇を招いた可能性があるが、我々の経験的分析では、前向きな治療効果がないと確実に判断することはできない。
論文 参考訳(メタデータ) (2023-04-13T00:59:12Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
本研究では,不確実性を考慮した逆確率スコア推定器 (UIPS) を提案する。
実世界の3つのレコメンデーションデータセットを用いた実験結果から,提案したUIPS推定器の有効サンプル効率が示された。
論文 参考訳(メタデータ) (2023-03-11T11:42:26Z) - Travel Demand Forecasting: A Fair AI Approach [0.9383397937755517]
本研究では,公正で高精度な旅行需要予測モデルを開発するための新しい手法を提案する。
具体的には、予測精度と保護属性の相関を明示的に測定する、新しい公正規則化項を導入する。
その結果,提案手法は,予測精度を維持しつつ,複数の保護属性の公平性を効果的に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-03-03T03:16:54Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Should College Dropout Prediction Models Include Protected Attributes? [0.4125187280299248]
機械学習モデルを構築し、1学年後に学生のドロップアウトを予測する。
モデル予測の全体的な性能と公平性を、4つの保護属性の有無で比較する。
保護属性を含むと、全体的な予測性能に影響を与えず、予測のアルゴリズム的公正さをわずかに改善することを発見した。
論文 参考訳(メタデータ) (2021-03-28T22:47:30Z) - Learning Models for Actionable Recourse [31.30850378503406]
本研究では, リスクの高い個人に対して, 精度を犠牲にすることなく, 理論的に言論を保証するアルゴリズムを提案する。
実データに対する広範な実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-11-12T01:15:18Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。