Monocular 3D Vehicle Detection Using Uncalibrated Traffic Cameras
through Homography
- URL: http://arxiv.org/abs/2103.15293v1
- Date: Mon, 29 Mar 2021 02:57:37 GMT
- Title: Monocular 3D Vehicle Detection Using Uncalibrated Traffic Cameras
through Homography
- Authors: Minghan Zhu, Songan Zhang, Yuanxin Zhong, Pingping Lu, Huei Peng and
John Lenneman
- Abstract summary: This paper proposes a method to extract the position and pose of vehicles in the 3D world from a single traffic camera.
We observe that the homography between the road plane and the image plane is essential to 3D vehicle detection.
We propose a new regression target called textittailedr-box and a textitdual-view network architecture which boosts the detection accuracy on warped BEV images.
- Score: 12.062095895630563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a method to extract the position and pose of vehicles in
the 3D world from a single traffic camera. Most previous monocular 3D vehicle
detection algorithms focused on cameras on vehicles from the perspective of a
driver, and assumed known intrinsic and extrinsic calibration. On the contrary,
this paper focuses on the same task using uncalibrated monocular traffic
cameras. We observe that the homography between the road plane and the image
plane is essential to 3D vehicle detection and the data synthesis for this
task, and the homography can be estimated without the camera intrinsics and
extrinsics. We conduct 3D vehicle detection by estimating the rotated bounding
boxes (r-boxes) in the bird's eye view (BEV) images generated from inverse
perspective mapping. We propose a new regression target called
\textit{tailed~r-box} and a \textit{dual-view} network architecture which
boosts the detection accuracy on warped BEV images. Experiments show that the
proposed method can generalize to new camera and environment setups despite not
seeing imaged from them during training.
Related papers
- Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - ONCE-3DLanes: Building Monocular 3D Lane Detection [41.46466150783367]
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space.
By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations.
arXiv Detail & Related papers (2022-04-30T16:35:25Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
arXiv Detail & Related papers (2022-03-25T12:13:23Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Disentangling and Vectorization: A 3D Visual Perception Approach for
Autonomous Driving Based on Surround-View Fisheye Cameras [3.485767750936058]
Multidimensional Vector is proposed to include the utilizable information generated in different dimensions and stages.
The experiments of real fisheye images demonstrate that our solution achieves state-of-the-art accuracy while being real-time in practice.
arXiv Detail & Related papers (2021-07-19T13:24:21Z) - What My Motion tells me about Your Pose: A Self-Supervised Monocular 3D
Vehicle Detector [41.12124329933595]
We demonstrate the use of monocular visual odometry for the self-supervised fine-tuning of a model for orientation estimation pre-trained on a reference domain.
We subsequently demonstrate an optimization-based monocular 3D bounding box detector built on top of the self-supervised vehicle orientation estimator.
arXiv Detail & Related papers (2020-07-29T12:58:40Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
arXiv Detail & Related papers (2020-03-09T15:08:40Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.